• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    4-Methylesculetin
    4-Methylesculetin
    Information
    CAS No. 529-84-0 Price
    Catalog No.CFN93058Purity>=98%
    Molecular Weight192.17Type of CompoundCoumarins
    FormulaC10H8O4Physical DescriptionPowder
    Download     COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • CSIRO - Agriculture Flagship (Australia)
  • Universidade da Beira Interior (Germany)
  • University of Wisconsin-Madison (USA)
  • Wroclaw Medical University (Poland)
  • Monash University Sunway Campus (Malaysia)
  • University of Indonesia (Indonesia)
  • Auburn University (USA)
  • Sapienza University of Rome (Italy)
  • Charles Sturt University (Denmark)
  • Medizinische Universit?t Wien (Austria)
  • University of Sao Paulo (Brazil)
  • More...
  • Package
    Featured Products
    Ginsenoside F4

    Catalog No: CFN90757
    CAS No: 181225-33-2
    Price: $358/10mg
    Ganoderic acid S

    Catalog No: CFN99066
    CAS No: 104759-35-5
    Price: $568/5mg
    Desmethoxy yangonin

    Catalog No: CFN90149
    CAS No: 15345-89-8
    Price: $188/20mg
    Przewaquinone A

    Catalog No: CFN92022
    CAS No: 76843-23-7
    Price: $463/5mg
    3,4-Di-O-caffeoylquinic acid methy...

    Catalog No: CFN90856
    CAS No: 114637-83-1
    Price: $388/5mg
    Biological Activity
    Description: 1. 4-Methylesculetin has cytotoxicity.
    2. 4-Methylesculetin displays a potent metal chelating agent.
    3. 4-Methylesculetin could be an effective agent to treat arthritis and associated secondary complications like oxidative stress.
    4. 4-Methylesculetin inhibits pancreatic cancer growth and metastasis by inhibition of hyaluronan synthesis.
    5. 4-Methylesculetin has great anti-oxidant and anti-inflammatory activities, it has a promising potentiality to treat inflammatory diseases, especially those related to reactive oxygen species, as inflammatory bowel disease.
    Targets: IL Receptor | TNF-α | COX | PGE | MMP(e.g.TIMP) | NF-kB | Akt | ROS
    4-Methylesculetin Description
    Source: The peels of Aesculus hippocastanum L.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Isomucronulatol

    Catalog No: CFN90839
    CAS No: 52250-35-8
    Price: $218/10mg
    4-O-Feruloylquinic acid

    Catalog No: CFN92392
    CAS No: 2613-86-7
    Price: $448/5mg
    Clemastanin B

    Catalog No: CFN95064
    CAS No: 112747-98-5
    Price: $298/10mg
    Kushenol C

    Catalog No: CFN92391
    CAS No: 99119-73-0
    Price: $468/10mg
    Isoschaftoside

    Catalog No: CFN92029
    CAS No: 52012-29-0
    Price: $288/20mg
    Tectol

    Catalog No: CFN91054
    CAS No: 2449-39-6
    Price: $318/5mg
    Decursitin D

    Catalog No: CFN95002
    CAS No: 245446-61-1
    Price: $388/5mg
    20(21)-Dehydrolucidenic acid A

    Catalog No: CFN90829
    CAS No: 852936-69-7
    Price: $358/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 5.2037 mL 26.0186 mL 52.0373 mL 104.0745 mL 130.0931 mL
    5 mM 1.0407 mL 5.2037 mL 10.4075 mL 20.8149 mL 26.0186 mL
    10 mM 0.5204 mL 2.6019 mL 5.2037 mL 10.4075 mL 13.0093 mL
    50 mM 0.1041 mL 0.5204 mL 1.0407 mL 2.0815 mL 2.6019 mL
    100 mM 0.052 mL 0.2602 mL 0.5204 mL 1.0407 mL 1.3009 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    4-Methylesculetin References Information
    Citation [1]

    Chem Biol Interact. 2018 Jan 25;280:59-63.

    4-methylesculetin, a coumarin derivative, ameliorates dextran sulfate sodium-induced intestinal inflammation.[Pubmed: 29217385 ]
    4-Methylesculetin is one of the coumarin derivatives with great anti-oxidant and anti-inflammatory activities. Recent studies have shown that 4-Methylesculetin has a promising potentiality to treat inflammatory diseases, especially those related to reactive oxygen species, as inflammatory bowel disease. Based on this, the present study aims to investigate the intestinal anti-inflammatory activity of 4-Methylesculetin in dextran sulfate sodium (DSS) model. For this purpose, mice received DSS 5% for 5 days followed by 2 days of filtered tap water. Treated groups received orally 5 or 25 mg/kg of 4-Methylesculetin daily since the first day. Macroscopic, microscopic and biochemical parameters were evaluated. 4-Methylesculetin (25 mg/kg) improved microscopic parameters, decreased MPO activity, reduced the colonic levels of IL-6 and counteracted GSH depletion when compared with DSS-control group. Our results show the intestinal anti-inflammatory activity of 4-Methylesculetin in DSS model, which is related to its antioxidant and anti-inflammatory properties. This way, 4-Methylesculetin, is a new potential compound for treatment of both types of IBD.
    Citation [2]

    J Toxicol Environ Health A. 2015;78(2):109-18.

    In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin.[Pubmed: 25424619]
    Coumarins are naturally occurring compounds, widely distributed throughout the plant kingdom (Plantae), and possess important pharmacological properties, including inhibition of oxidative stress. In this context, newly synthesized coumarin compounds are being produced due to their potent antioxidant activities. Therefore, the aim of the present study was to determine the in vitro cytotoxic, mutagenic, and genotoxic effects of 6,7-dihydroxycoumarin (6,7-HC) and 4-Methylesculetin (4-ME) using the Salmonella/microsome test and in cultured human lymphocytes the comet assay and micronucleus test. The three coumarin derivatives concentrations evaluated in comet and MN assays were 2, 8, and 32 μg/mL, selected through a preliminary trypan blue-staining assay. In the Ames test, the 5 concentrations tested were 62.5, 125, 250, 500, and 750 μg/plate. Positive (methyl methane-sulfonate, MMS) and negative (dimethyl sulfoxide, DMSO) control groups were also included in the analysis. Our results showed that 4-ME induced greater cytotoxicity at high concentrations than 6,7-HC. In addition, both compounds were not mutagenic in the Ames test and not genotoxic or clastogenic/aneugenic in cultured human lymphocytes.
    Citation [3]

    Biochimie. 2013 Jun;95(6):1326-35.

    Antiarthritic and antiinflammatory propensity of 4-methylesculetin, a coumarin derivative.[Pubmed: 23485680]
    Coumarins are a group of natural compounds widely distributed in plants. Of late, coumarins and their derivatives have grabbed much attention from the pharmacological and pharmaceutical arena due to their broad range of therapeutical qualities. A coumarin derivative 4-Methylesculetin (4-ME) has known to possess effective antioxidant and radical-scavenging properties. Recently they have also shown to down regulate nuclear factor-kappa B (NF-κB) and protein kinase B (Akt) that play a vital role in inflammation and apoptosis. In view of this, the present study investigated the anti-arthritic potentiality of 4-ME by assessing its ability to inhibit cartilage and bone degeneration, inflammation and associated oxidative stress. Arthritis being a debilitating joint disease, results in the deterioration of extracellular matrix (ECM) of cartilage and synovium. Participation of both enzymatic and non-enzymatic factors in disease perpetuation is well documented. The present study demonstrated the mitigation of augmented serum levels of hyaluronidase and matrix metalloproteinases (MMP-13, MMP-3 and MMP-9) responsible for cartilage degeneration by 4-ME. It also protected bone resorption by reducing the elevated levels of bone-joint exoglycosidases, cathepsin-D and tartrate resistant acid phosphatases. Further, 4-ME significantly ameliorated the upregulated non-enzymatic inflammatory markers like TNF-α, IL-1β, IL-6, COX-2 and PGE2. Besides, 4-ME effectively stabilized the arthritis-induced oxidative stress by restoring the levels of reactive oxygen species, lipid and hydro peroxides and antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. Thus, the study suggests that 4-ME could be an effective agent to treat arthritis and associated secondary complications like oxidative stress.
    Citation [4]

    J Appl Toxicol. 2014 Jan;34(1):33-9.

    Absence of genotoxic effects of the coumarin derivative 4-methylesculetin in vivo and its potential chemoprevention against doxorubicin-induced DNA damage.[Pubmed: 23047850 ]
    4-Methylesculetin (4-ME) is a synthetic derivative of coumarin that displays a potent reactive oxygen species (ROS) scavenger and metal chelating agent and therefore has been produced to help reduce the risk of human disease. The main objective of this study was to investigate the in vivo genotoxicity of 4-ME and initially to verify its potential antigenotoxicity on doxorubicin (DXR)-induced DNA damage. Different doses of 4-ME (500, 1000 and 2000 mg kg(-1) body weight) were administered by gavage only or with a simultaneous intraperitoneal (i.p.) injection of DXR (80 mg kg(-1)). The following endpoints were analyzed: DNA damage in peripheral blood, liver, bone marrow, brain and testicle cells according to an alkaline (pH > 13) comet assay and micronucleus induction in bone marrow cells. Cytotoxicity was assessed by scoring polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). No differences were observed between the negative control and the groups treated with a 4-ME dose for any of the endpoints analyzed, indicating that it lacks genotoxic and cytotoxic effects. Moreover, 4-ME demonstrated protective effects against DXR-induced DNA damage at all tested doses and in all analyzed cell types, which ranged from 34.1% to 93.3% in the comet assay and 54.4% to 65.9% in the micronucleus test.
    Citation [5]

    Int J Cancer. 2007 Jun 15;120(12):2704-9.

    Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice.[Pubmed: 17354230 ]
    We report the inhibitory effect of 4-Methylesculetin (ME), a 4-methylumbelliferone derivative, on hyaluronan (HA) synthesis by pancreatic cancer cells, and its resulting anticancer action. First, HA in cell culture was analyzed using competitive inhibition with hyaluronic acid-binding protein (HABP) to study HA synthesis by the human pancreatic cancer cell line KP1-NK, and cell-surface HA was visualized using a particle-exclusion assay to study the synthesis of extracellular matrix HA. We also analyzed the inhibitory effect of ME on cell adhesion and invasion, which play a role in the invasion, growth and metastasis of human pancreatic cancer. Furthermore, we examined HA in human pancreatic cancer cells transplanted into the hypodermis of nude mice to study the inhibitory effect of ME on HA synthesis. Moreover, pancreatic cancer cells were also transplanted into the abdomen of nude mice to study whether ME would have the potential to prolong the survival of patients with end-stage pancreatic cancer. ME at 10 muM did not inhibit the growth of human pancreatic cancer cells, but inhibited HA synthesis in cell culture by 40%, adhesion by 44% and invasion by 40%. ME inhibited the proliferation of subcutaneous tumors and HA synthesis (by 50%) of pancreatic cancer transplanted into the hypodermis of nude mice. ME also prolonged the survival time of nude mice bearing abdominally transplanted pancreatic cancer cells. ME inhibited pancreatic cancer growth and metastasis by inhibition of HA synthesis. These results suggest that ME may prolong the survival time of patients with end-stage pancreatic cancer.