• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    L-Nicotine
    Information
    CAS No. 54-11-5 Price $40 / 20mg
    Catalog No.CFN99512Purity>=98%
    Molecular Weight162.23Type of CompoundAlkaloids
    FormulaC10H14N2Physical DescriptionOil
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Michigan State University (USA)
  • Universiti Kebangsaan Malaysia (Malaysia)
  • University of Wisconsin-Madison (USA)
  • Cancer Research Initatives Found... (Malaysia)
  • University of Minnesota (USA)
  • Anna University (India)
  • Seoul National University of Sci... (Korea)
  • Northeast Normal University Chan... (China)
  • University of Virginia (USA)
  • Uniwersytet Gdański (Poland)
  • Donald Danforth Plant Science Ce... (USA)
  • More...
  • Package
    Featured Products
    Tenuifolin

    Catalog No: CFN98157
    CAS No: 20183-47-5
    Price: $118/20mg
    alpha-Amyrin

    Catalog No: CFN92377
    CAS No: 638-95-9
    Price: $318/5mg
    Tanshinone IIB

    Catalog No: CFN99820
    CAS No: 17397-93-2
    Price: $463/5mg
    Glycitein

    Catalog No: CFN99106
    CAS No: 40957-83-3
    Price: $128/20mg
    Ganoderic acid S

    Catalog No: CFN99066
    CAS No: 104759-35-5
    Price: $568/5mg
    L-Nicotine Description
    Source: The herbs of Nicotiana tabacum.
    Biological Activity or Inhibitors: 1. Nicotine is a potent inhibitor of cardiac A-type K+ channels, with blockade probably due to block of closed and open channels, this action may contribute to the ability of nicotine to affect cardiac electrophysiology and induce arrhythmias.
    2. Nicotine has a two-phase effect on osteoblasts,showing as low level of nicotine could promote the proliferation and differentiation of the rabbit osteoblasts while the high level gets the opposite effect, vitamin C can antagonize the inhibitory effect of higher concentration of nicotine on proliferation and differentiation of osteoblasts in part.
    3. Chronic nicotine exposure augments atherosclerosis by enhancing the production of proinflammatory cytokines by macrophages, which, in turn, activate atherogenic NF-kappaB target genes in the aortic lesions.
    4. Nicotine is able to activate mitogenic signalling pathways, which promote cell growth or survival as well as increase chemoresistance of cancer cells, nicotine activates its downstream signalling to interfere with the ubiquitination process and prevent Bcl-2 from being degraded in lung cancer cells, resulting in the increase of chemoresistance.
    5. Intramuscular administration of nicotine for 3 weeks can not increase arteriogenesis in ischemic hindlimb of rabbits, but is capable of significantly promoting intramyocardial angiogenesis, it can also accelerate intimal proliferation and thickening of balloon catheter denuding injury iliac artery, so it may contribute to the development of restenosis
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Miltirone

    Catalog No: CFN98531
    CAS No: 27210-57-7
    Price: $288/5mg
    Parishin B

    Catalog No: CFN93113
    CAS No: 174972-79-3
    Price: $168/20mg
    Columbianetin beta-D-glucopyranosi...

    Catalog No: CFN95038
    CAS No: 55836-35-6
    Price: $288/5mg
    Syringaresinol-di-O-glucoside

    Catalog No: CFN90458
    CAS No: 66791-77-3
    Price: $288/20mg
    Clemastanin B

    Catalog No: CFN95064
    CAS No: 112747-98-5
    Price: $298/10mg
    2''-O-Rhamnosylicariside II

    Catalog No: CFN92551
    CAS No: 135293-13-9
    Price: $388/10mg
    Nodakenin

    Catalog No: CFN90232
    CAS No: 495-31-8
    Price: $138/20mg
    Iristectorin A

    Catalog No: CFN95037
    CAS No: 37744-61-9
    Price: $333/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi:10.1016/j.phymed.2017.12.030

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 6.1641 mL 30.8204 mL 61.6409 mL 123.2818 mL 154.1022 mL
    5 mM 1.2328 mL 6.1641 mL 12.3282 mL 24.6564 mL 30.8204 mL
    10 mM 0.6164 mL 3.082 mL 6.1641 mL 12.3282 mL 15.4102 mL
    50 mM 0.1233 mL 0.6164 mL 1.2328 mL 2.4656 mL 3.082 mL
    100 mM 0.0616 mL 0.3082 mL 0.6164 mL 1.2328 mL 1.541 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    L-Nicotine References Information
    Citation [1]

    Anal Bioanal Chem. 2013 Aug;405(20):6479-87.

    Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of L-nicotine in diluted saliva and urine samples.[Pubmed: 23754330]
    Molecularly imprinted polymers (MIPs) are synthetic receptors that are able to specifically bind their target molecules in complex samples, making them a versatile tool in biosensor technology. The combination of MIPs as a recognition element with quartz crystal microbalances (QCM-D with dissipation monitoring) gives a straightforward and sensitive device, which can simultaneously measure frequency and dissipation changes. In this work, bulk-polymerized L-Nicotine MIPs were used to test the feasibility of L-Nicotine detection in saliva and urine samples. First, L-Nicotine-spiked saliva and urine were measured after dilution in demineralized water and 0.1× phosphate-buffered saline solution for proof-of-concept purposes. L-Nicotine could indeed be detected specifically in the biologically relevant micromolar concentration range. After successfully testing on spiked samples, saliva was analyzed, which was collected during chewing of either nicotine tablets with different concentrations or of smokeless tobacco. The MIPs in combination with QCM-D were able to distinguish clearly between these samples: This proves the functioning of the concept with saliva, which mediates the oral uptake of nicotine as an alternative to the consumption of cigarettes.
    Citation [2]

    Anal Bioanal Chem. 2013 Aug;405(20):6453-60.

    Heat-transfer-based detection of L-nicotine, histamine, and serotonin using molecularly imprinted polymers as biomimetic receptors.[Pubmed: 23685906]
    In this work, we will present a novel approach for the detection of small molecules with molecularly imprinted polymer (MIP)-type receptors. This heat-transfer method (HTM) is based on the change in heat-transfer resistance imposed upon binding of target molecules to the MIP nanocavities. Simultaneously with that technique, the impedance is measured to validate the results. For proof-of-principle purposes, aluminum electrodes are functionalized with MIP particles, and L-Nicotine measurements are performed in phosphate-buffered saline solutions. To determine if this could be extended to other templates, histamine and serotonin samples in buffer solutions are also studied. The developed sensor platform is proven to be specific for a variety of target molecules, which is in agreement with impedance spectroscopy reference tests. In addition, detection limits in the nanomolar range could be achieved, which is well within the physiologically relevant concentration regime. These limits are comparable to impedance spectroscopy, which is considered one of the state-of-the-art techniques for the analysis of small molecules with MIPs. As a first demonstration of the applicability in biological samples, measurements are performed on saliva samples spiked with L-Nicotine. In summary, the combination of MIPs with HTM as a novel readout technique enables fast and low-cost measurements in buffer solutions with the possibility of extending to biological samples.
    Citation [3]

    Microbiology. 2009 Jun;155(Pt 6):1866-77.

    Uptake of L-nicotine and of 6-hydroxy-L-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport.[Pubmed: 19443550 ]
    The mechanism by which L-Nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-L-Nicotine, but expression of the 6-hydroxy-L-Nicotine oxidase gene allowed both bacteria to take up this compound. L-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-L-Nicotine and 2-amino-L-Nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.
    Citation [4]

    Psychopharmacology (Berl). 1989;99(2):208-12.

    Discriminative stimulus effects of intravenous l-nicotine and nicotine analogs or metabolites in squirrel monkeys.[Pubmed: 2508155]
    Squirrel monkeys were trained to emit one response after IV administration of L-Nicotine (0.4 or 0.2 mumol/kg) and a different response after IV administration of saline. After stable discriminative performances were established, subjects were tested with cumulative doses of L-Nicotine (0.02-2.2 mumol/kg), d-nicotine (0.02-19.7 mumol/kg), l-nornicotine (0.2-12.0 mumol/kg), l-cotinine (56.8-567.5 mumol/kg), and dl-anabasine (0.6-19.7 mumol/kg). All of the drugs produced dose-related increases in the percentage of drug-appropriate responses emitted, from predominantly saline-appropriate responses after low doses, to predominantly drug-appropriate responses at the highest doses studied. Relative potency comparisons indicated that L-Nicotine was 28 times more potent than d-nicotine, 29 times more potent than l-nornicotine, and approximately 2000 times more potent than l-cotinine. Each of the drugs also produced decreases in rates of responding, with potency order similar to that obtained for the discriminative effects. The effects of l-cotinine may be attributed to trace amounts of L-Nicotine, which existed within the l-cotinine. The effects of dl-anabasine were lethal in one subject and were consequently not studied in the other subjects.