• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 42971-09-5 Price $88 / 20mg
    Catalog No.CFN90467Purity>=98%
    Molecular Weight350.45Type of CompoundAlkaloids
    FormulaC22H26N2O2Physical DescriptionCryst.
    Download     COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Seoul National University of Sci... (Korea)
  • Sanford Burnham Medical Research... (USA)
  • University of Wisconsin-Madison (USA)
  • Cornell University (USA)
  • Lodz University of Technology (Poland)
  • Hamdard University (India)
  • The Vancouver Prostate Centre (V... (Canada)
  • Funda??o Universitária de Desen... (Brazil)
  • Amity University (India)
  • Shanghai Institute of Biochemist... (China)
  • University Medical Center Mainz (Germany)
  • More...
  • Package
    Featured Products
    Terrestrosin D

    Catalog No: CFN90821
    CAS No: 179464-23-4
    Price: $268/10mg
    Pomolic acid

    Catalog No: CFN99433
    CAS No: 13849-91-7
    Price: $413/5mg

    Catalog No: CFN99306
    CAS No: 119400-87-2
    Price: $398/5mg
    Ginsenoside Rk2

    Catalog No: CFN92818
    CAS No: 364779-14-6
    Price: $498/10mg
    Decursitin D

    Catalog No: CFN95002
    CAS No: 245446-61-1
    Price: $388/5mg
    Biological Activity
    Description: 1. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders.
    2. Vinpocetine can attenuate neointimal formation in diabetic rats and inhibit HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.
    3. Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.
    4. Vinpocetine has anti-inflammatory activity, can treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.
    5. Vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues.
    Targets: NF-kB | Beta Amyloid | Caspase | IL Receptor | TNF-α | Akt | JNK | Bcl-2/Bax | ROS | PI3K | IkB | MAPK | IKK
    Vinpocetine Description
    Source: The herbs of Catharanthus roseus (L.) G. Don
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds

    Catalog No: CFN96878
    CAS No: 65428-13-9
    Price: $413/5mg

    Catalog No: CFN98730
    CAS No: 479-43-6
    Price: $388/5mg

    Catalog No: CFN95005
    CAS No: 53947-89-0
    Price: $388/10mg

    Catalog No: CFN98172
    CAS No: 479-91-4
    Price: $158/20mg
    2''-O-acetylsaikosaponin A

    Catalog No: CFN95085
    CAS No: 102934-42-9
    Price: $318/5mg

    Catalog No: CFN98778
    CAS No: 488-76-6
    Price: $218/20mg

    Catalog No: CFN95001
    CAS No: 1891-25-4
    Price: $358/5mg
    Chrysin 6-C-arabinoside 8-C-glucos...

    Catalog No: CFN92284
    CAS No: 185145-33-9
    Price: $368/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.8535 mL 14.2674 mL 28.5347 mL 57.0695 mL 71.3369 mL
    5 mM 0.5707 mL 2.8535 mL 5.7069 mL 11.4139 mL 14.2674 mL
    10 mM 0.2853 mL 1.4267 mL 2.8535 mL 5.7069 mL 7.1337 mL
    50 mM 0.0571 mL 0.2853 mL 0.5707 mL 1.1414 mL 1.4267 mL
    100 mM 0.0285 mL 0.1427 mL 0.2853 mL 0.5707 mL 0.7134 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Vinpocetine References Information
    Citation [1]

    Am J Physiol Cell Physiol. 2015 May 1;308(9):C737-49.

    Vinpocetine modulates metabolic activity and function during retinal ischemia.[Pubmed: 25696811]
    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as Vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize Vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of Vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that Vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues.
    Citation [2]

    Exp Eye Res. 2014 Oct;127:49-58.

    Vinpocetine inhibits amyloid-beta induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells.[Pubmed: 25041941]
    We investigated the role of transcription factor NF-κB in the activation of inflammasome in the RPE and the effect of Vinpocetine, a dietary supplement with inhibitory effect on NF-κΒ. ARPE19/NF-κB-luciferase reporter cells treated with Aβ demonstrated enhanced NF-κB activation that was significantly suppressed by Vinpocetine. Intraperitoneal injection of Vinpocetine (15 mg/kg) inhibited NF-κB nuclear translocation and reduced the expression and activation of NLRP3, caspase-1, IL-1β, IL-18, and TNF-α in the RPE of adult rats that received intraocular Αβ, as measured by retinal immunohistochemistry and Western blot. Cytokine level in the vitreous was assayed using multiplex suspension arrays and revealed significantly lower concentration of MIP-3α, IL-6, IL-1α, IL-1β, IL-18, and TNF-α in Vinpocetine treated animals. These results suggest that the NF-κB pathway is activated by Aβ in the RPE and signals the priming of NLRP3 inflammasome and the expression of pro-inflammatory cytokines including the inflammasome substrates IL-1β and IL-18. NF-κB inhibition may be an effective approach to stem the chronic inflammatory milieu that underlies the development of AMD. Vinpocetine is a potentially useful anti-inflammatory agent that is well-tolerated in long term use.
    Citation [3]

    Chem Biol Interact. 2015 Jul 25;237:9-17.

    Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB.[Pubmed: 25980587]
    Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of Vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1β and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of Vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1β and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that Vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.
    Citation [4]

    Neuroscience. 2015 Feb 12;286:393-403.

    Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.[Pubmed: 25514048]
    The present study is designed to investigate the effect of Vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with Vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Chronic administration of Vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, Vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of Vinpocetine in PD.
    Citation [5]

    PLoS One. 2014 May 12;9(5):e96894.

    Vinpocetine attenuates neointimal hyperplasia in diabetic rat carotid arteries after balloon injury.[Pubmed: 24819198]
    Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of Vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of Vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that Vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by Vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.