Science | Nature | Cell | View More
Natural Products
Lapachol
Lapachol
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Lapachol
Price: $50 / 20mg
CAS No.: 84-79-7
Catalog No.: CFN97403
Molecular Formula: C15H14O3
Molecular Weight: 242.3 g/mol
Purity: >=98%
Type of Compound: Quinones
Physical Desc.: Yellow powder
Source: The roots of Radermachera sinica
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Download: COA    MSDS    SDF
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $11.8 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Gyeongsang National University (Korea)
  • Uniwersytet Jagielloński w Kra... (Poland)
  • Nanjing University of Chinese M... (China)
  • Seoul National University (Korea)
  • Northeast Normal University Cha... (China)
  • Cornell University (USA)
  • National Research Council of Ca... (Canada)
  • Florida A&M University (USA)
  • VIB Department of Plant Systems... (Belgium)
  • Sapienza University of Rome (Italy)
  • Utrecht University (Netherlands)
  • More...
Package
Featured Products
Kojic acid

Catalog No: CFN94478
CAS No: 501-30-4
Price: $40/20mg
D-(-)-Salicin

Catalog No: CFN99541
CAS No: 138-52-3
Price: $30/20mg
Dehydroglyasperin C

Catalog No: CFN96483
CAS No: 199331-35-6
Price: $ / mg
Inokosterone

Catalog No: CFN92515
CAS No: 15130-85-5
Price: $ / mg
Alisol C monoacetate

Catalog No: CFN90199
CAS No: 26575-93-9
Price: $168/20mg
Linoleic acid

Catalog No: CFN93168
CAS No: 60-33-3
Price: $30/20mg
Notoginsenoside Fc

Catalog No: CFN93283
CAS No: 88122-52-5
Price: $198/20mg
3-oxo-Olean-12-en-28-oic acid

Catalog No: CFN92194
CAS No: 17990-42-0
Price: $90/20mg
Vitexin 2''-glucoside

Catalog No: CFN70421
CAS No: 61360-94-9
Price: $ / mg
Strychnine

Catalog No: CFN98130
CAS No: 57-24-9
Price: $60/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Lapachol shows both antimicrobial, trypanocidal and antiviral activities, it also shows antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Probiotics are capable of converting Lapachol into the most effective cytotoxic compound against a breast cancer cell line.
Targets: Antifection
In vitro:
Lett Appl Microbiol. 2014 Jul;59(1):108-14.
Cytotoxicity of lapachol metabolites produced by probiotics.[Pubmed: 24635204]
Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of Lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert Lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity.
METHODS AND RESULTS:
The microbial transformations of Lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of Lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than Lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than Lapachol. The present study is the first to demonstrate that probiotics are capable of converting Lapachol into the most effective cytotoxic compound against a breast cancer cell line.
CONCLUSIONS:
Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as Lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting Lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess the effects of bacterial metabolism on drug performance and toxicity.
Bioorg Med Chem. 2008 Jan 15;16(2):668-74.
Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms.[Pubmed: 18029184 ]

METHODS AND RESULTS:
Derivatives of natural quinones with biological activities, such as Lapachol, alpha- and beta-lapachones, have been synthesized and their trypanocidal activity evaluated in vitro in Trypanosoma cruzi cells. All tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity as compared with current trypanocidal drugs, nifurtimox and benznidazole. The results presented here show that the anti-T. cruzi activity of the alpha-lapachone derivatives can be increased by the replacement of the benzene ring by a pyridine moiety.
CONCLUSIONS:
Free radical production and consequently oxidative stress through redox cycling or production of electrophilic metabolites are the potential biological mechanism of action for these synthetic quinones.
Bioorg Med Chem Lett. 2004 Mar 8;14(5):1145-9.
Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.[Pubmed: 14980653]

METHODS AND RESULTS:
The antimalarial activity of benzo[a]phenazines synthesized from 1,2-naphthoquinone, Lapachol, beta-lapachone and several derivatives have been tested against Plasmodium falciparum in vitro using isolates of parasites with various susceptibilities to chloroquine and/or mefloquine. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]-hipoxanthine in comparison to controls with no drugs, always testing in parallel chloroquine, a standard antimalarial. Among seven benzophenazines tested, four had significant in vitro activities; important, the parasites resistant to chloroquine were more susceptible to the active phenazines in vitro. The doses of phenazines causing 50% inhibition of parasite growth varied from 1.67 to 9.44 microM. The two most active ones were also tested in vivo against Plasmodium berghei in mice, in parallel with Lapachol and beta-lapachone. The 3-sulfonic acid-beta-lapachone-derived phenazine was the most active causing up to 98% inhibition of parasitaemia in long term treatment (7 doses) subcutaneously, whereas the phenazine from 3-bromo-beta-lapachone was inactive.
CONCLUSIONS:
Thus, these simple phenazines, containing polar (-Br,-I) and ionizable (-SO(3)H, -OH) groups, easily synthesized from cheap, natural or synthetic precursors (Lapachol and beta-lapachone), at rather low cost, provide prototypes for development of new antimalarials aiming the chloroquine resistant parasites.
Lapachol Description
Source: The roots of Radermachera sinica
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Tembetarine

Catalog No: CFN95542
CAS No: 18446-73-6
Price: $318/5mg
3',4',5',5,7-Pentamethoxyflavanone

Catalog No: CFN95414
CAS No: 479672-30-5
Price: $218/20mg
8-Hydroxy-5,7-dimethoxyflavanone

Catalog No: CFN95580
CAS No: 201230-40-2
Price: $318/5mg
Macrophylloside D

Catalog No: CFN95113
CAS No: 179457-69-3
Price: $318/10mg
Quercetin-3'-glucoside

Catalog No: CFN95271
CAS No: 19254-30-9
Price: $318/10mg
3',8-Dihydroxyvestitol

Catalog No: CFN95384
CAS No: 122587-87-5
Price: $413/5mg
beta-Hydroxyacteoside

Catalog No: CFN95499
CAS No: 109279-13-2
Price: $318/10mg
New compound 4

Catalog No: CFN95185
CAS No: N/A
Price: $368/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 4.1271 mL 20.6356 mL 41.2712 mL 82.5423 mL 103.1779 mL
5 mM 0.8254 mL 4.1271 mL 8.2542 mL 16.5085 mL 20.6356 mL
10 mM 0.4127 mL 2.0636 mL 4.1271 mL 8.2542 mL 10.3178 mL
50 mM 0.0825 mL 0.4127 mL 0.8254 mL 1.6508 mL 2.0636 mL
100 mM 0.0413 mL 0.2064 mL 0.4127 mL 0.8254 mL 1.0318 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Cell Research:
Oncol Rep. 2005 Feb;13(2):329-33.
Demonstration of the lapachol as a potential drug for reducing cancer metastasis.[Pubmed: 15643520]
Metastasis is the major process responsible for the death in cancer patients. In the search for more effective antineoplasic drugs, many substances are under investigation, among them Lapachol. This study aims to examine the molecular and morphological alterations caused by Lapachol treatment, as well as its effects on the intrinsic tissue invasive property of this cell line.
METHODS AND RESULTS:
HeLa cells were exposed to different concentrations of Lapachol, and the resulting alterations on cellular protein profile, morphology and invasiveness property were studied. At 400 microg/ml, cellular viability remains unchanged, but Lapachol induces alterations in the protein profile and inhibits the invasiveness of HeLa cells in CAM model.
CONCLUSIONS:
With these results, we can conclude that Lapachol has a great potential of application in fighting metastasis.
Structure Identification:
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Jan 1;944:128-35.
Structural elucidation of the metabolites of lapachol in rats by liquid chromatography-tandem mass spectrometry.[Pubmed: 24316523]
Lapachol is a natural naphthoquinone compound derived from Bignoniaceae (Tabebuia sp.) that possesses a range of significant biological activities.
METHODS AND RESULTS:
Nine phase I and four phase II metabolites of Lapachol in rat bile were firstly elucidated and identified using a sensitive LC-ESI-MS(n) method. The molecular structures of the metabolites have been presented on the basis of the characteristics of their precursor and product ions, as well as their fragmentation mechanisms and chromatographic retention times. The results indicated that the phase I metabolites were predominantly biotransformed by the hydroxylation, semiquinone hydrogenation at the oxygen position or a side chain rearrangement. The phase II metabolites were identified as the glucuronidated conjugates which showed a characteristic neutral loss of 176Da. Based on the results of this research, we have proposed the metabolic pathways for Lapachol in rats.
CONCLUSIONS:
This work has provided novel information for the in vivo Lapachol metabolism which could be used to develop a novel drug candidate, as well as a better understanding of the safety and efficacy of the drug.
Kojic acid

Catalog No: CFN94478
CAS No: 501-30-4
Price: $40/20mg
D-(-)-Salicin

Catalog No: CFN99541
CAS No: 138-52-3
Price: $30/20mg
Dehydroglyasperin C

Catalog No: CFN96483
CAS No: 199331-35-6
Price: $ / mg
Inokosterone

Catalog No: CFN92515
CAS No: 15130-85-5
Price: $ / mg
Alisol C monoacetate

Catalog No: CFN90199
CAS No: 26575-93-9
Price: $168/20mg
Linoleic acid

Catalog No: CFN93168
CAS No: 60-33-3
Price: $30/20mg
Notoginsenoside Fc

Catalog No: CFN93283
CAS No: 88122-52-5
Price: $198/20mg
3-oxo-Olean-12-en-28-oic acid

Catalog No: CFN92194
CAS No: 17990-42-0
Price: $90/20mg
Vitexin 2''-glucoside

Catalog No: CFN70421
CAS No: 61360-94-9
Price: $ / mg
Strychnine

Catalog No: CFN98130
CAS No: 57-24-9
Price: $60/20mg
Tags: buy Lapachol | Lapachol supplier | purchase Lapachol | Lapachol cost | Lapachol manufacturer | order Lapachol | Lapachol distributor