Science | Nature | Cell | View More
Natural Products
2,5-Dihydroxybenzaldehyde
2,5-Dihydroxybenzaldehyde
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name 2,5-Dihydroxybenzaldehyde
Price: $30 / 20mg
CAS No.: 1194-98-5
Catalog No.: CFN99307
Molecular Formula: C7H6O3
Molecular Weight: 138.1 g/mol
Purity: >=98%
Type of Compound: Phenols
Physical Desc.: Powder
Source: The heartwoods of Pseudolarix amabilis.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Download: COA    MSDS    SDF    Manual
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $7.0 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Universidad de Antioquia (Colombia)
  • Universiti Putra Malaysia(UPM) (Malaysia)
  • Centrum Menselijke Erfelijkheid (Belgium)
  • University of Zurich (Switzerland)
  • Washington State University (USA)
  • Wroclaw Medical University (Poland)
  • Sant Gadge Baba Amravati Univer... (India)
  • Semmelweis Unicersity (Hungary)
  • The Vancouver Prostate Centre (... (Canada)
  • The University of Newcastle (Australia)
  • Korea Institute of Oriental Med... (Korea)
  • More...
Package
Featured Products
Aurantio-obtusin

Catalog No: CFN99732
CAS No: 67979-25-3
Price: $90/20mg
Piplartine

Catalog No: CFN96137
CAS No: 20069-09-4
Price: $100/20mg
Isoliensinine

Catalog No: CFN99574
CAS No: 6817-41-0
Price: $80/20mg
Isosaponarin

Catalog No: CFN90133
CAS No: 19416-87-6
Price: $318/5mg
Artemisinin

Catalog No: CFN99011
CAS No: 63968-64-9
Price: $30/20mg
Cryptochlorogenic acid

Catalog No: CFN99117
CAS No: 905-99-7
Price: $90/20mg
(-)-Pinoresinol

Catalog No: CFN92287
CAS No: 81446-29-9
Price: $268/5mg
Rutin

Catalog No: CFN99642
CAS No: 153-18-4
Price: $30/20mg
Ginsenoside Rh1

Catalog No: CFN99970
CAS No: 63223-86-9
Price: $60/20mg
Madecassic acid

Catalog No: CFN99914
CAS No: 18449-41-7
Price: $30/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: 2,5-Dihydroxybenzaldehyde has antioxidant activity.
Targets: Antifection
In vitro:
Molecules. 2014 Jun 6;19(6):7497-515.
Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers.[Pubmed: 24914896]
Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-Dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms.
METHODS AND RESULTS:
The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin). Surface pressure-area (π-A) and surface potential-area (Δψ-A) isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial -lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers.
CONCLUSIONS:
The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.
Langmuir. 2012 Oct 2;28(39):14055-64.
Diffusion-free mediator based miniature biofuel cell anode fabricated on a carbon-MEMS electrode.[Pubmed: 22946444 ]
We report on the functionalization of a micropatterned carbon electrode fabricated using the carbon-MEMS process for its use as a miniature diffusion-free glucose oxidase anode.
METHODS AND RESULTS:
Carbon-MEMS based electrodes offer precise manufacturing control on both the micro- and nanoscale and possess higher electron conductivity than redox hydrogels. However, the process involves pyrolysis in a reducing environment that renders the electrode surface less reactive and introduction of a high density of functional groups becomes challenging. Our functionalization strategy involves the electrochemical oxidation of amine linkers onto the electrode. This strategy works well with both aliphatic and aryl linkers and uses stable compounds. The anode is designed to operate through mediated electron transfer between 2,5-Dihydroxybenzaldehyde (DHB) based redox mediator and glucose oxidase enzyme. The electrode was first functionalized with ethylene diamine (EDA) to serve as a linker for the redox mediator. The redox mediator was then grafted through reductive amination, and attachment was confirmed through cyclic voltammetry. The enzyme immobilization was carried out through either adsorption or attachment, and their efficiency was compared. For enzyme attachment, the DHB attached electrode was functionalized again through electro-oxidation of aminobenzoic acid (ABA) linker. The ABA functionalization resulted in reduction of the DHB redox current, perhaps due to increased steric hindrance on the electrode surface, but the mediator function was preserved. Enzyme attachment was then carried out through a coupling reaction between the free carboxyl group on the ABA linker and the amine side chains on the enzyme. The enzyme incubation for both adsorption and attachment was done either through a dry spotting method or wet spotting method. The dry spotting method calls for the evaporation of enzyme droplet to form a thin film before sealing the electrode environment, to increase the effective concentration of the enzyme on the electrode surface during incubation. The electrodes were finally protected with a gelatin based hydrogel film. The anode half-cell was tested using cyclic voltammetry in deoxygenated phosphate buffer saline solution pH 7.4 to minimize oxygen interference and to simulate the pH environment of the body. The electrodes that yielded the highest anodic current were prepared by enzyme attachment method with dry spotting incubation.
CONCLUSIONS:
A polarization response was generated for this anodic half-cell and exhibits operation close to maximum efficiency that is limited by the mass transport of glucose to the electrode.
2,5-Dihydroxybenzaldehyde Description
Source: The heartwoods of Pseudolarix amabilis.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Betmidin

Catalog No: CFN95047
CAS No: 35589-22-1
Price: $413/5mg
Epischisandrone

Catalog No: CFN95212
CAS No: 98619-26-2
Price: $413/5mg
Cagayanin

Catalog No: CFN95480
CAS No: 99096-51-2
Price: $318/20mg
2-Phenylethyl-beta-glucopyranoside

Catalog No: CFN95429
CAS No: 18997-54-1
Price: $318/10mg
Isovalerylshikonin

Catalog No: CFN95222
CAS No: 52387-14-1
Price: $318/10mg
10-Methoxygambogenic acid

Catalog No: CFN95450
CAS No: 2095102-72-8
Price: $318/10mg
Solafuranone

Catalog No: CFN95312
CAS No: 367965-50-2
Price: $318/5mg
7-(4-hydroxy-3-methoxyphenyl)-1-ph...

Catalog No: CFN95139
CAS No: 79559-60-7
Price: $268/20mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 7.2411 mL 36.2056 mL 72.4113 mL 144.8226 mL 181.0282 mL
5 mM 1.4482 mL 7.2411 mL 14.4823 mL 28.9645 mL 36.2056 mL
10 mM 0.7241 mL 3.6206 mL 7.2411 mL 14.4823 mL 18.1028 mL
50 mM 0.1448 mL 0.7241 mL 1.4482 mL 2.8965 mL 3.6206 mL
100 mM 0.0724 mL 0.3621 mL 0.7241 mL 1.4482 mL 1.8103 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Structure Identification:
Int J Biol Macromol. 2012 Dec;51(5):1159-66.
Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor.[Pubmed: 22982811]
A new kind of nano-chitosan Schiff base ligand (CHNS) with particle size of 34 nm was formed by the reaction between the 2-amino groups of glucosamine residue of nano-chitosan and a 2,5-Dihydroxybenzaldehyde.
METHODS AND RESULTS:
The chemical structures of the nano-chitosan and nano-chitosan Schiff base were characterized by FT-IR spectra, particle sizer, zeta potential, and elemental analysis. A new, simple and effective chemically modified carbon paste electrode with CHNS was prepared and used as a lead (II) sensor. The prepared electrode was characterized using scanning electronic microscopy (SEM-EDX) and cyclic voltammetry (CV). The modified electrode showed only one oxidation peak in the anodic scan at -0.34 V (vs. Ag/AgCl) for the oxidation of lead (II). The dedection limit (LOD) was calculated as 1.36×10(-7) for a 10-min preconcentration time at pH 6.0.
Comptes Rendus Chimie, 2016,20(4): 365-9.
Spectroscopic determination of the dissociation constants of 2,4- and 2,5-dihydroxybenzaldehydes and relationships to their antioxidant activities[Reference: WebLink]

METHODS AND RESULTS:
UV–visible spectra of 2,4-dihydroxybenzaldehyde and 2,5-Dihydroxybenzaldehyde (2,4DHB and 2,5DHB) are recorded in a wide range of pH. The dissociation pK values obtained from these measurements were 6.94 ± 0.03 and 9.28 ± 0.03 for 2,4DHB and 8.42 ± 0.03 and 10.93 ± 0.03 for 2,5DHB.
CONCLUSIONS:
The results indicate that the pH at which the assays for antioxidant capacity measurements are made is very important in light of the hydroxyl group dissociation, because of the different dissociation constants of the different isomers. The percentage of dissociation of each group is essential, the positions of these groups in the ring appearing as a secondary factor.
Aurantio-obtusin

Catalog No: CFN99732
CAS No: 67979-25-3
Price: $90/20mg
Piplartine

Catalog No: CFN96137
CAS No: 20069-09-4
Price: $100/20mg
Isoliensinine

Catalog No: CFN99574
CAS No: 6817-41-0
Price: $80/20mg
Isosaponarin

Catalog No: CFN90133
CAS No: 19416-87-6
Price: $318/5mg
Artemisinin

Catalog No: CFN99011
CAS No: 63968-64-9
Price: $30/20mg
Cryptochlorogenic acid

Catalog No: CFN99117
CAS No: 905-99-7
Price: $90/20mg
(-)-Pinoresinol

Catalog No: CFN92287
CAS No: 81446-29-9
Price: $268/5mg
Rutin

Catalog No: CFN99642
CAS No: 153-18-4
Price: $30/20mg
Ginsenoside Rh1

Catalog No: CFN99970
CAS No: 63223-86-9
Price: $60/20mg
Madecassic acid

Catalog No: CFN99914
CAS No: 18449-41-7
Price: $30/20mg
Tags: buy 2,5-Dihydroxybenzaldehyde | 2,5-Dihydroxybenzaldehyde supplier | purchase 2,5-Dihydroxybenzaldehyde | 2,5-Dihydroxybenzaldehyde cost | 2,5-Dihydroxybenzaldehyde manufacturer | order 2,5-Dihydroxybenzaldehyde | 2,5-Dihydroxybenzaldehyde distributor