Science | Nature | Cell | View More
Natural Products
Fraxin
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Fraxin
Price: $50 / 20mg
CAS No.: 524-30-1
Catalog No.: CFN99747
Molecular Formula: C16H18O10
Molecular Weight: 370.32 g/mol
Purity: >=98%
Type of Compound: Coumarins
Physical Desc.: Powder
Source: The barks of Fraxinus brngeana DC.
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Download: COA    MSDS    SDF    Manual
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $10.8 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • The Ohio State University (USA)
  • Universidad Industrial de Santa... (Colombia)
  • Monash University (Australia)
  • Research Unit Molecular Epigene... (Germany)
  • Indian Institute of Science (India)
  • Auburn University (USA)
  • University of Toronto (Canada)
  • University of Ioannina (Greece)
  • Universita' Degli Studi Di Cagl... (Italy)
  • Institute of Pathophysiology Me... (Austria)
  • National Cancer Center Research... (Japan)
  • More...
Package
Featured Products
Chrysosplenetin

Catalog No: CFN97026
CAS No: 603-56-5
Price: $138/20mg
Glucobrassicin

Catalog No: CFN00484
CAS No: 143231-38-3
Price: $ / mg
Zerumbone

Catalog No: CFN91066
CAS No: 471-05-6
Price: $70/20mg
14-Deoxyandrographolide

Catalog No: CFN92802
CAS No: 4176-97-0
Price: $238/10mg
Berberine hydrochloride

Catalog No: CFN99562
CAS No: 633-65-8
Price: $30/20mg
Kobophenol A

Catalog No: CFN92530
CAS No: 124027-58-3
Price: $318/10mg
Anethole

Catalog No: CFN98550
CAS No: 104-46-1
Price: $30/20mg
Chrysin

Catalog No: CFN98741
CAS No: 480-40-0
Price: $40/20mg
Glycyrrhizic acid

Catalog No: CFN99151
CAS No: 1405-86-3
Price: $40/20mg
Kirenol

Catalog No: CFN98867
CAS No: 52659-56-0
Price: $50/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Fraxin possesses a variety of bioactivities such as anti-inflammatory, antioxidant, analgesic, antimicrobial, antiviral, immunomodulatory, anti-hyperuricemia and diuresis. Fraxin enhances urate excretion partly by inhibiting mURAT1 or mGLUT9 in kidney of hyperuricemic mice.
Targets: GLUT | mURAT1 | mOAT1 | mOCT1
In vitro:
Exp Mol Med. 2005 Oct 31;37(5):436-46.
Natural compounds,fraxin and chemicals structurally related to fraxin protect cells from oxidative stress.[Pubmed: 16264268]
Coumarins comprise a group of natural phenolic compounds found in a variety of plant sources. In view of the established low toxicity, relative cheapness, presence in the diet and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further.
METHODS AND RESULTS:
The purpose of this study is to investigate cellular protective activity of coumarin compound, Fraxin extracted from Weigela florida var. glabbra, under oxidative stress, to identify genes expressed differentially by Fraxin and to compare antioxidative effect of Fraxin with its structurally related chemicals. Of the coumarins, protective effects of Fraxin against cytotoxicity induced by H2O2 were examined in human umbilical vein endothelial cells (HUVECs). Fraxin showed free radical scavenging effect at high concentration (0.5 mM) and cell protective effect against H2O2-mediated oxidative stress. Fraxin recovered viability of HUVECs damaged by H2O2-treatment and reduced the lipid peroxidation and the internal reactive oxygen species level elevated by H2O2 treatment. Differential display reverse transcription-PCR revealed that Fraxin upregulated antiapoptotic genes (clusterin and apoptosis inhibitor 5) and tumor suppressor gene (ST13). Based on structural similarity comparing with Fraxin, seven chemicals, fraxidin methyl ether (29.4% enhancement of viability), prenyletin (26.4%), methoxsalen (20.8%), diffratic acid (19.9%), rutoside (19.1%), xanthyletin (18.4%), and kuhlmannin (18.2%), enhanced more potent cell viability in the order in comparison with Fraxin, which showed only 9.3% enhancement of cell viability.
CONCLUSIONS:
These results suggest that Fraxin and Fraxin-related chemicals protect HUVECs from oxidative stress.
In vivo:
J Nat Prod. 2006 May;69(5):755-7.
Metabolic fate of fraxin administered orally to rats.[Pubmed: 16724835]

METHODS AND RESULTS:
Naturally occurring Fraxin (1) was administered orally to rats to investigate its metabolism. Urinary metabolites were analyzed by three-dimensional HPLC, and fraxetin-7-O-sulfate (2), fraxetin-7-O-beta-glucuronide (3), fraxetin (4), 6,7,8-trihydroxycoumarin (5), and fraxidin (6) were isolated. Fraxin (1) was extensively metabolized to 4, which was partly metabolized to 5 in a rat fecal suspension after incubation for 24 h. Urinary excretion of 4 and 5 in rats administered orally with 1 was substantially reduced when the rats were treated with antibiotics to suppress their intestinal flora. Incubation of 1 with a rat liver S-9 mixture yielded 6.
CONCLUSIONS:
These results suggest that hydrolysis and demethylation of 1 are performed by intestinal microflora, while methylation occurs in the liver.
Eur J Pharmacol. 2011 Sep;666(1-3):196-204.
Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice.[Pubmed: 21620826]
The aim of the present study was to investigate the effects of cortex Fraxini coumarines esculetin, esculin, fraxetin and Fraxin on renal dysfunction and expression abnormality of renal organic ion transporters in hyperuricemic animals.
METHODS AND RESULTS:
Mice were orally given 250 mg/kg oxonate for seven consecutive days to induce hyperuricemia and renal dysfunction. After 1h of oxonate induction daily, animals were orally treated with esculetin, esculin, fraxetin and Fraxin at 20 and 40 mg/kg, respectively. Esculetin, esculin, fraxetin and Fraxin significantly decreased serum urate, creatinine and blood urea nitrogen levels and increased urine urate and creatinine excretion in hyperuricemic mice. Esculetin and esculin up-regulated expressions of renal organic anion transporter 1 (mOAT1), organic cation and carnitine transporters (mOCT1-2 and mOCTN1-2), but failed to affect renal glucose transporter 9 (mGLUT9) and urate transporter 1 (mURAT1) in this model. Fraxetin specifically inhibited renal mURAT1, while Fraxin extensively interacted with renal mGLUT9, mURAT1, mOAT1 and mOCT1 in hyperuricemic mice. Furthermore, esculetin, fraxetin and Fraxin increased mABCG2 mRNA expression and decreased its protein levels in renal apical membrane in hyperuricemic mice.
CONCLUSIONS:
These results indicate that esculetin and esculin have beneficial effects on hyperuricemia and renal dysfunction, resulting in restoration of mOAT1, mOCT1-2 and mOCTN1-2, and fraxetin and Fraxin enhance urate excretion partly by inhibiting mURAT1 or mGLUT9 in kidney of hyperuricemic mice. Regulation of mABCG2 by cortex Fraxini coumarines may be partly contributed to their beneficial actions. This study provides an evidence to support clinical therapeutic effects of cortex Fraxini coumarines on hyperuricemia with renal dysfunction.
Fraxin Description
Source: The barks of Fraxinus brngeana DC.
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Polygalin J

Catalog No: CFN95175
CAS No: N/A
Price: $318/5mg
Japondipsaponin E1

Catalog No: CFN95354
CAS No: 175586-66-0
Price: $318/5mg
9-O-Acetyl-fargesol

Catalog No: CFN95031
CAS No: 449172-61-6
Price: $413/5mg
Lyciumamide B

Catalog No: CFN95286
CAS No: 1647111-41-8
Price: $318/5mg
New compound 11

Catalog No: CFN95351
CAS No: N/A
Price: $318/10mg
1,3,6-Trihydroxy-2-methylanthraqui...

Catalog No: CFN95095
CAS No: 87686-87-1
Price: $218/10mg
Clemomandshuricoside B

Catalog No: CFN95302
CAS No: 905294-48-6
Price: $318/10mg
Poricoic acid B

Catalog No: CFN95050
CAS No: 137551-39-4
Price: $318/20mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.7004 mL 13.5018 mL 27.0037 mL 54.0073 mL 67.5092 mL
5 mM 0.5401 mL 2.7004 mL 5.4007 mL 10.8015 mL 13.5018 mL
10 mM 0.27 mL 1.3502 mL 2.7004 mL 5.4007 mL 6.7509 mL
50 mM 0.054 mL 0.27 mL 0.5401 mL 1.0801 mL 1.3502 mL
100 mM 0.027 mL 0.135 mL 0.27 mL 0.5401 mL 0.6751 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Structure Identification:
Biomed Chromatogr. 2005 Nov;19(9):696-702.
Non-aqueous capillary electrophoresis for separation and simultaneous determination of fraxin, esculin and esculetin in Cortex fraxini and its medicinal preparations.[Pubmed: 15828063]

METHODS AND RESULTS:
A non-aqueous capillary electrophoresis method has been developed for the separation and simultaneous determination of Fraxin, esculin and esculetin in Cortex Fraxini and its preparation for the first time. Optimum separation of the analytes was obtained on a 47 cm x 75 microm i.d. fused-silica capillary using a non-aqueous buffer system of 60 mM sodium cholate, 20 mM ammonium acetate, 20% acetonitrile and 3% acetic acid at 20 kV and 292 K, respectively. The relative standard deviations (RSDs) of the migration times and the peak heights of the three analytes were in the range of 0.23-0.28 and 2.12-2.60%, respectively. Detection limits of Fraxin, esculin and esculetin were 0.1557, 0.4073 and 0.5382 microg/mL, respectively. In the tested concentration range, good linear relationships (correlation coefficients 0.9995 for Fraxin, 0.9999 for esculin and 0.9992 for esculetin) between peak heights and concentrations of the analytes were observed.
CONCLUSIONS:
This method has been successfully applied to simultaneous determination of the three bioactive components with the recoveries from 90.2 to 109.2% in the five samples.
Chrysosplenetin

Catalog No: CFN97026
CAS No: 603-56-5
Price: $138/20mg
Glucobrassicin

Catalog No: CFN00484
CAS No: 143231-38-3
Price: $ / mg
Zerumbone

Catalog No: CFN91066
CAS No: 471-05-6
Price: $70/20mg
14-Deoxyandrographolide

Catalog No: CFN92802
CAS No: 4176-97-0
Price: $238/10mg
Berberine hydrochloride

Catalog No: CFN99562
CAS No: 633-65-8
Price: $30/20mg
Kobophenol A

Catalog No: CFN92530
CAS No: 124027-58-3
Price: $318/10mg
Anethole

Catalog No: CFN98550
CAS No: 104-46-1
Price: $30/20mg
Chrysin

Catalog No: CFN98741
CAS No: 480-40-0
Price: $40/20mg
Glycyrrhizic acid

Catalog No: CFN99151
CAS No: 1405-86-3
Price: $40/20mg
Kirenol

Catalog No: CFN98867
CAS No: 52659-56-0
Price: $50/20mg
Tags: buy Fraxin | Fraxin supplier | purchase Fraxin | Fraxin cost | Fraxin manufacturer | order Fraxin | Fraxin distributor