Science | Nature | Cell | View More
Natural Products
Sucrose
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Sucrose
Price: $30 / 20mg
CAS No.: 57-50-1
Catalog No.: CFN98970
Molecular Formula: C12H22O11
Molecular Weight: 342.3 g/mol
Purity: >=98%
Type of Compound: Saccharides
Physical Desc.: Powder
Source: The roots of Euphorbia kansui
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Download: COA    MSDS    SDF
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $10.8 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Regional Crop Research Institute (Korea)
  • Heinrich-Heine-University Düss... (Germany)
  • Universidad de La Salle (Mexico)
  • Monash University Sunway Campus (Malaysia)
  • Universidad de Ciencias y Artes... (Mexico)
  • FORTH-IMBB (Greece)
  • Shanghai University of TCM (China)
  • University of Parma (Italy)
  • Chulalongkorn University (Thailand)
  • University of Perugia (Italy)
  • Cornell University (USA)
  • More...
Package
Featured Products
Glucoerucin

Catalog No: CFN00488
CAS No: 15592-37-7
Price: $ / mg
Peonidin chloride

Catalog No: CFN92034
CAS No: 134-01-0
Price: $380/5mg
Quercitrin

Catalog No: CFN98850
CAS No: 522-12-3
Price: $40/20mg
Retronecine

Catalog No: CFN00322
CAS No: 480-85-3
Price: $ /
Beta-mangostin

Catalog No: CFN99723
CAS No: 20931-37-7
Price: $218/10mg
Ginsenoside F2

Catalog No: CFN99755
CAS No: 62025-49-4
Price: $40/20mg
Ganoderic acid TR

Catalog No: CFN92235
CAS No: 862893-75-2
Price: $368/5mg
Aromadendrin

Catalog No: CFN98736
CAS No: 480-20-6
Price: $318/20mg
Fangchinoline

Catalog No: CFN99167
CAS No: 436-77-1
Price: $40/20mg
Daidzin 6''-O-malonate

Catalog No: CFN91028
CAS No: 124590-31-4
Price: $318/5mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Sucrose is used extensively as a food and a sweetener, it is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of Sucrose, needed during fermentative feedstock production.
In vitro:
Appl Microbiol Biotechnol. 2014 Nov;98(21):9033-44.
Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation.[Pubmed: 25125039]
Sugarcane is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of Sucrose, needed during fermentative feedstock production. However, Sucrose metabolism in Escherichia coli is not well understood because the two most common strains, E. coli K-12 and B, do not grow on Sucrose.
METHODS AND RESULTS:
Here, using a Sucrose utilizing strain, E. coli W, we undertake an in-depth comparison of Sucrose and glucose metabolism including growth kinetics, metabolite profiling, microarray-based transcriptome analysis, labelling-based proteomic analysis and (13)C-fluxomics. While E. coli W grew comparably well on Sucrose and glucose integration of the omics, datasets showed that during growth on each carbon source, metabolism was distinct. The metabolism was generally derepressed on Sucrose, and significant flux rearrangements were observed in central carbon metabolism. These included a reduction in the flux of the oxidative pentose phosphate pathway branch, an increase in the tricarboxylic acid cycle flux and a reduction in the glyoxylate shunt flux due to the dephosphorylation of isocitrate dehydrogenase. But unlike growth on other sugars that induce cAMP-dependent Crp regulation, the phosphoenol-pyruvate-glyoxylate cycle was not active on Sucrose. Lower acetate accumulation was also observed in Sucrose compared to glucose cultures. This was linked to induction of the acetate catabolic genes actP and acs and independent of the glyoxylic shunt.
CONCLUSIONS:
Overall, the cells stayed highly oxidative. In summary, Sucrose metabolism was fast, efficient and led to low acetate accumulation making it an ideal carbon source for industrial fermentation with E. coli W.
Int J Oral Sci. 2014 Dec;6(4):195-204.
Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.[Pubmed: 25059251]
The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates.
METHODS AND RESULTS:
S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% Sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/Sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under Sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, Sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control.
CONCLUSIONS:
Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
Sucrose Description
Source: The roots of Euphorbia kansui
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Isomargaritene

Catalog No: CFN95304
CAS No: 64271-11-0
Price: $318/10mg
Buddlenoid A

Catalog No: CFN95025
CAS No: 142750-32-1
Price: $368/5mg
Gossypetin 3-sophoroside-8-glucosi...

Catalog No: CFN95528
CAS No: 77306-93-5
Price: $318/5mg
2''-O-acetylsaikosaponin A

Catalog No: CFN95085
CAS No: 102934-42-9
Price: $318/5mg
Dihydrophaseic acid 4'-O-beta-D-gl...

Catalog No: CFN95393
CAS No: 78914-56-4
Price: $318/5mg
Cichoriin

Catalog No: CFN95196
CAS No: 531-58-8
Price: $100/20mg
Complanatoside C

Catalog No: CFN95144
CAS No: N/A
Price: $318/5mg
Methylgomisin O

Catalog No: CFN95236
CAS No: N/A
Price: $318/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.9214 mL 14.6071 mL 29.2141 mL 58.4283 mL 73.0353 mL
5 mM 0.5843 mL 2.9214 mL 5.8428 mL 11.6857 mL 14.6071 mL
10 mM 0.2921 mL 1.4607 mL 2.9214 mL 5.8428 mL 7.3035 mL
50 mM 0.0584 mL 0.2921 mL 0.5843 mL 1.1686 mL 1.4607 mL
100 mM 0.0292 mL 0.1461 mL 0.2921 mL 0.5843 mL 0.7304 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Kinase Assay:
J Neurosci. 2015 Jan 28;35(4):1396-410.
Behavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task.[Pubmed: 25632118]
Drosophila melanogaster egg-laying site selection offers a genetic model to study a simple form of value-based decision. We have previously shown that Drosophila females consistently reject a Sucrose-containing substrate and choose a plain (Sucrose-free) substrate for egg laying in our Sucrose versus plain decision assay. However, either substrate is accepted when it is the sole option. Here we describe the neural mechanism that underlies females' Sucrose rejection in our Sucrose versus plain assay.
METHODS AND RESULTS:
First, we demonstrate that females explored the Sucrose substrate frequently before most egg-laying events, suggesting that they actively suppress laying eggs on the Sucrose substrate as opposed to avoiding visits to it. Second, we show that activating a specific subset of DA neurons triggered a preference for laying eggs on the Sucrose substrate over the plain one, suggesting that activating these DA neurons can increase the value of the Sucrose substrate for egg laying. Third, we demonstrate that neither ablating nor inhibiting the mushroom body (MB), a known Drosophila learning and decision center, affected females' egg-laying preferences in our Sucrose versus plain assay, suggesting that MB does not mediate this specific decision-making task.
CONCLUSIONS:
We propose that the value of a Sucrose substrate- as an egg-laying option-can be adjusted by the activities of a specific DA circuit. Once the Sucrose substrate is determined to be the lesser valued option, females execute their decision to reject this inferior substrate not by stopping their visits to it, but by actively suppressing their egg-laying motor program during their visits.
Glucoerucin

Catalog No: CFN00488
CAS No: 15592-37-7
Price: $ / mg
Peonidin chloride

Catalog No: CFN92034
CAS No: 134-01-0
Price: $380/5mg
Quercitrin

Catalog No: CFN98850
CAS No: 522-12-3
Price: $40/20mg
Retronecine

Catalog No: CFN00322
CAS No: 480-85-3
Price: $ /
Beta-mangostin

Catalog No: CFN99723
CAS No: 20931-37-7
Price: $218/10mg
Ginsenoside F2

Catalog No: CFN99755
CAS No: 62025-49-4
Price: $40/20mg
Ganoderic acid TR

Catalog No: CFN92235
CAS No: 862893-75-2
Price: $368/5mg
Aromadendrin

Catalog No: CFN98736
CAS No: 480-20-6
Price: $318/20mg
Fangchinoline

Catalog No: CFN99167
CAS No: 436-77-1
Price: $40/20mg
Daidzin 6''-O-malonate

Catalog No: CFN91028
CAS No: 124590-31-4
Price: $318/5mg
Tags: buy Sucrose | Sucrose supplier | purchase Sucrose | Sucrose cost | Sucrose manufacturer | order Sucrose | Sucrose distributor