In vitro: |
Life Sci. 2015 Jun 1;130:25-30. | Neuroprotection against 6-OHDA-induced oxidative stress and apoptosis in SH-SY5Y cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE pathway.[Pubmed: 25818191] | The aim of this study was to prove the neuroprotective effect of 5,7-Dihydroxychromone (DHC) through the Nrf2/ARE signaling pathway. To elucidate the mechanism, we investigated whether 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells could be attenuated by DHC via activating the Nrf2/ARE signal and whether 5,7-Dihydroxychromone could down-regulate 6-OHDA-induced excessive ROS generation METHODS AND RESULTS: To evaluate the neuroprotective effect of 5,7-Dihydroxychromone against 6-OHDA-induced apoptosis, FACS analysis was performed using PI staining. The inhibitory effect of 5,7-Dihydroxychromone against 6-OHDA-induced ROS generation was evaluated by DCFH-DA staining assay. Additionally, translocation of Nrf2 to the nucleus and increased Nrf2/ARE binding activity, which subsequently resulted in the up-regulation of the Nrf2-dependent antioxidant gene expressions including HO-1, NQO1, and GCLc, were evaluated by Western blotting and EMSA.Pre-treatment of 5,7-Dihydroxychromone, one of the constituents of Cudrania tricuspidata, significantly protects 6-OHDA-induced neuronal cell death and ROS generation. Also, DHC inhibited the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells. 5,7-Dihydroxychromone induced the translocation of Nrf2 to the nucleus and increased Nrf2/ARE binding activity which results in the up-regulation of the expression of Nrf2-dependent antioxidant genes, including HO-1, NQO1, and GCLc. The addition of Nrf2 siRNA abolished the neuroprotective effect of DHC against 6-OHDA-induced neurotoxicity and the expression of Nrf2-mediated antioxidant genes. CONCLUSIONS: Activation of Nrf2/ARE signal by 5,7-Dihydroxychromone exerted neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. This finding will give an insight that activating Nrf2/ARE signal could be a new potential therapeutic strategy for neurodegenerative disease. |
|
In vivo: |
Biosci Biotechnol Biochem. 2014;78(8):1392-401. | Anti-diabetic properties of Daphniphyllum macropodum fruit and its active compound.[Pubmed: 25130743] | Among the compounds isolated, 5,7-Dihydroxychromone potently induced the differentiation of mouse 3T3-L1 preadipocytes. DME and 5,7-Dihydroxychromone increased PPARγ and liver X receptor α (LXRα) mRNA expression levels. METHODS AND RESULTS: To determine whether the adipogenic effects we observed might affect serum glucose levels, we undertook in vivo experiment using streptozotocin-/high-fat diet-induced type 2 diabetes mouse model. DME supplementation reduced serum glucose, total cholesterol, and triacylglycerol levels in diabetes mice. CONCLUSIONS: These results suggest that DME may be useful for the prevention and treatment of type 2 diabetes mellitus. Moreover, it was proposed that 5,7-Dihydroxychromone isolated from DME is one of the active compounds that may contribute to regulate blood glucose levels. |
|