Science | Nature | Cell | View More
Natural Products
Sodium tauroursodeoxycholate
Sodium tauroursodeoxycholate
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Sodium tauroursodeoxycholate
Price:
CAS No.: 35807-85-3
Catalog No.: CFN91667
Molecular Formula: C26H45NO6S.Na
Molecular Weight: 522.70 g/mol
Purity: >=98%
Type of Compound: Steroids
Physical Desc.: Powder
Source:
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Download: COA    MSDS
Similar structural: Comparison
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / Inquiry
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • CSIRO - Agriculture Flagship (Australia)
  • University of Maryland (USA)
  • VIT University (India)
  • Complutense University of Madrid (Spain)
  • Chungnam National University (Korea)
  • University of Ioannina (Greece)
  • Osmania University (India)
  • Seoul National University of Sc... (Korea)
  • The Ohio State University (USA)
  • Vin?a Institute of Nuclear Scie... (Serbia)
  • Universitas Airlangga (Indonesia)
  • More...
Package
Featured Products
Peonidin chloride

Catalog No: CFN92034
CAS No: 134-01-0
Price: $380/5mg
Juglone

Catalog No: CFN90497
CAS No: 481-39-0
Price: $40/20mg
Vaccarin

Catalog No: CFN90131
CAS No: 53452-16-7
Price: $30/20mg
Orobol

Catalog No: CFN98737
CAS No: 480-23-9
Price: $ /
Baicalein

Catalog No: CFN98783
CAS No: 491-67-8
Price: $40/20mg
Momordicoside P

Catalog No: CFN92308
CAS No: 1011726-62-7
Price: $ / mg
7-Epitaxol

Catalog No: CFN90371
CAS No: 105454-04-4
Price: $60/20mg
Phloretin

Catalog No: CFN97040
CAS No: 60-82-2
Price: $40/20mg
Cannabidivarin

Catalog No: CFN89253
CAS No: 24274-48-4
Price: $ / mg
Phillygenin

Catalog No: CFN90511
CAS No: 487-39-8
Price: $118/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Tauroursodeoxycholate Sodium is an endoplasmic reticulum (ER) stress inhibitor, used for the treatment of gallstones and liver cirrhosis. Tauroursodeoxycholic acid sodium salt significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholic acid sodium salt also inhibits ERK.
In vitro:
Am J Physiol Gastrointest Liver Physiol . 2004 Jun;286(6):G973-982.
Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways[Pubmed: 14701718]
Tauroursodeoxychate (TUDCA) is used for the treatment of cholangiopathies including primary sclerosing cholangitis, which is considered the primary risk factor for cholangiocarcinoma. The effect of TUDCA on cholangiocarcinoma growth is unknown. We evaluated the role of TUDCA in the regulation of growth of the cholangiocarcinoma cell line Mz-ChA-1. TUDCA inhibited the growth of Mz-ChA-1 cells in concentration- and time-dependent manners. TUDCA inhibition of cholangiocarcinoma growth was blocked by BAPTA-AM, an intracellular Ca(2+) concentration ([Ca(2+)](i)) chelator, and H7, a PKC-alpha inhibitor. TUDCA increased [Ca(2+)](i) and membrane translocation of the Ca(2+)-dependent PKC-alpha in Mz-ChA-1 cells. TUDCA inhibited the activity of MAPK, and this inhibitory effect of TUDCA was abrogated by BAPTA-AM and H7. TUDCA did not alter the activity of Raf-1 and B-Raf and the phosphorylation of MAPK p38 and JNK/stress-activated protein kinase. TUDCA inhibits Mz-ChA-1 growth through a signal-transduction pathway involving MAPK p42/44 and PKC-alpha but independent from Raf proteins and MAPK p38 and JNK/stress-activated protein kinases. TUDCA may be important for the treatment of cholangiocarcinoma.
Cell Physiol Biochem . 2015;36(3):866-883.
Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms[Pubmed: 26044599]
Background/aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC) can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC)-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP) signal with induction of the dual specificity mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1), which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4) and c-jun-NH2-terminal kinase (JNK) activation. Furthermore, TUDC induced a protein kinase A (PKA)-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp)-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.
J Hepatol . 2001 Feb;34(2):184-191.
Effect of tauroursodeoxycholate and S-adenosyl-L-methionine on 17beta-estradiol glucuronide-induced cholestasis[Pubmed: 11281545]
Background/aims: S-adenosyl-L-methionine (SAMe) and tauroursodeoxycholate (TUDC) exert an additive ameliorating effect on taurolithocholate (TLC)-induced cholestasis. The aims were to investigate the protective effect of SAMe on 17beta-estradiol-glucuronide (17betaEG) cholestasis and to find out whether SAMe and TUDC may exert an additive, ameliorating effect. Methods: Hepatocyte couplet function was assessed by canalicular vacuolar accumulation (cVA) of cholyllysylfluorescein (CLF). Cells were co-treated with 17betaEG and SAMe, TUDC, or both (protection study), or treated with 17betaEG and then with SAMe, TUDC or both (reversion study) before CLF uptake. Couplets were also co-treated with SAMe and dehydroepiandrosterone (DHEA), a competitive substrate for the sulfotransferase involved in 17betaEG detoxification. The effects of 17betaEG, SAMe and TUDC were also examined on intracellular distribution of F-actin. Results: Both SAMe and TUDC significantly protected against, and reversed, 17betaEG-induced cholestasis, but their effects were not additive. DHEA abolished the protective effect of SAMe. 17BetaEG did not affect the uptake of CLF into hepatocytes at the concentrations used, and also, it did not affect the intracellular distribution of F-actin. Conclusions: 17BetaEG does not affect the uptake of CLF into hepatocytes. SAMe and TUDC protect and reverse 17betaEG-induced cholestasis, but without an additive effect. Protection by SAMe may involve facilitating the sulfation of 17betaEG.
Cell Signal . 2021 Aug;84:110024.
Iron overload induces apoptosis of osteoblast cells via eliciting ER stress-mediated mitochondrial dysfunction and p-eIF2α/ATF4/CHOP pathway in vitro[Pubmed: 33901579]
Iron is an essential element for crucial biological function; whereas excess iron sedimentation impairs the main functions of tissues or organs. Cumulative researches have shown that the disturbances in iron metabolism, especially iron overload is closely concatenating with bone loss. Nevertheless, the specific process of iron overload-induced apoptosis in osteoblasts has not been thoroughly studied. In this study, our purpose is to elucidate the mechanism of osteoblast apoptosis induced by iron overload via the MC3T3-E1 cell line. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. These results showed that treatment with FAC dose-dependently induced the apoptosis of MC3T3-E1 cells at 48 h, dysfunction of iron metabolism, and increased intracellular reactive oxygen species (ROS) levels. Following, FAC does-dependently caused the calcium dyshomeostasis, decreased the calcium concentration in endoplasmic reticulum (ER), but increased the crosstalk between ER and mitochondria, and calcium concentration in the mitochondria. Moreover, FAC dose-dependently decreased mitochondrial membrane potential (MMP) and enhanced the expression of apoptosis related proteins (Bax, Cyto-C and C-caspase3). We furthermore revealed that FAC treatment activated the ER-mediated cell apoptosis via p-eIF2α/ATF4/CHOP pathway in MC3T3-E1 osteoblasts cells. In addition, pretreatment with the N-acetylcysteine (NAC) or Tauroursodeoxycholate Sodium (TUDC) attenuated cell apoptosis, ROS levels, mitochondria fragmentation and ER stress-related protein expression, and recovered the protein expression related to iron metabolism. In conclusion, our finding suggested that iron overload induced apoptosis via eliciting ER stress, which resulted in mitochondrial dysfunction and activated p-eIF2α/ATF4/CHOP pathway.
Cardiovasc Res . 2011 Nov 1;92(2):307-316.
Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCα-mediated MKP-1 induction[Pubmed: 21840882]
Aims: Hyperplasia of vascular smooth muscle cells (VSMCs) after blood vessel injury is one of the major pathophysiological mechanisms associated with neointima. Tauroursodeoxycholate (TUDCA) is a cytoprotective agent in a variety of cells including hepatocytes as well as an inducer of apoptosis in cancer cells. In this study, we investigated whether TUDCA could prevent neointimal hyperplasia by suppressing the growth and migration of VSMCs. Methods and results: Transporters of TUDCA uptake in human VSMCs (hVSMCs) were analysed by RT-PCR and western blot. A knock-down experiment using specific si-RNA revealed that TUDCA was incorporated into hVSMCs via organic anion transporter 2 (OATP2). TUDCA reduced the viability of hVSMCs, which were mediated by inhibition of extracellular signal-regulated kinase (ERK) by induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) via protein kinase Cα (PKCα). The anti-proliferative effect of TUDCA was reversed by treatment with 7-hydroxystaurosporine, an inhibitor of PKC, and by the knock-down of MKP-1. In addition, TUDCA suppressed hVSMC migration, which was mediated by reduced matrix metalloproteinase-9 (MMP-9) expression by ERK inhibition, as well as reduced viability of hVSMCs. Rats with carotid artery balloon injury received oral administration of TUDCA; this reduced the increase in ERK and MMP-9 caused by balloon injury. TUDCA significantly decreased the ratio of intima to media by reducing proliferation and inducing apoptosis of the VSMCs. Conclusion: TUDCA inhibits neointimal hyperplasia by reducing proliferation and inducing apoptosis of smooth muscle cells by suppression of ERK via PKCα-mediated MKP-1 induction.
In vivo:
Eur J Pharmacol . 2001 Jun 1;421(1):55-60.
Effect of sodium tauroursodeoxycholate on phalloidin-induced cholestasis in rats[Pubmed: 11408049]
We investigated the therapeutic effect of tauroursodeoxycholate on phalloidin-induced cholestasis in rats. Intrahepatic cholestasis was induced by administration of phalloidin (500 microg/kg, i.p.) for 7 days. From the day of the last phalloidin injection, tauroursodeoxycholate (60-360 micromol/kg) was given intravenously twice a day for 4 days. On the next day after the last tauroursodeoxycholate administration, bile flow, serum biochemical parameters and biliary lipid excretion rates were determined. Tauroursodeoxycholate significantly suppressed the decrease in bile flow and increases in serum alkaline phosphatase, leucine aminopeptidase and glutamic pyruvic transaminase activities, cholesterol, phospholipid and bile acid concentrations observed in phalloidin-induced cholestasis in rats. Furthermore, tauroursodeoxycholate significantly improved the biliary cholesterol and phospholipid excretion rates in phalloidin-induced cholestasis in rats. These results demonstrate the usefulness of tauroursodeoxycholate as a therapeutic agent in intrahepatic cholestasis.
Eur J Vasc Endovasc Surg . 2017 Mar;53(3):337-345.
Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress[Pubmed: 27889204]
Objective/background: Abdominal aortic aneurysm (AAA) is characterised by the infiltration of smooth muscle cell (SMC) apoptosis, inflammatory cells, neovascularisation, and degradation of the extracellular matrix. Previous work has shown that endoplasmic reticulum (ER) stress and SMC apoptosis were increased both in a mouse model and human thoracic aortic aneurysm. However, whether the ER stress is activated in AAA formation and whether suppressing ER stress attenuates AAA is unknown. Methods: Human AAA and control aorta samples were collected. Expression of ER stress chaperones glucose-regulated protein (GRP)-78 and GRP-94 was detected by immunohistochemical staining. The effect of ER stress inhibitor tauroursodeoxycholic acid (TUDCA) on AAA formation in angiotensin (Ang) II induced apolipoprotein E mice was explored. Elastin staining was used to observe the rupture of elastic fragmentation. Immunohistochemistry and Western blot analysis were performed, to detect the protein expression of ER stress chaperones and apoptosis molecules. -/- Results: There was significant upregulation of GRP-78 and GRP-94 in aneurysmal areas of human AAA and Ang II induced ApoE mice (p < .05). TUDCA significantly attenuated the maximum diameters of abdominal aortas in Ang II induced ApoE mice (p < .05). TUDCA significantly reduced expression of ER stress chaperones and the apoptotic cell numbers (p < .05). Furthermore, TUDCA significantly reduced expression of apoptosis molecules, such as caspase-3, caspase-12, C/EBP homologous protein, c-Jun N-terminal kinase activating transcription factor 4, X-box binding protein, and eukaryotic initiation factor 2α in Ang II induced ApoE mice (p < .05). -/--/--/- Conclusion: The results suggest that ER stress is involved in human and Ang II induced AAA formation in ApoE mice. TUDCA attenuates Ang II induced AAA formation in ApoE mice by inhibiting ER stress mediated apoptosis. -/--/-
Sodium tauroursodeoxycholate Description
Source:
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Oxytroflavoside F

Catalog No: CFN95489
CAS No: 1391144-85-6
Price: $318/5mg
20-O-Glucoginsenoside Rf

Catalog No: CFN95036
CAS No: 68406-27-9
Price: $318/5mg
Isomargaritene

Catalog No: CFN95304
CAS No: 64271-11-0
Price: $318/10mg
(Z)-Aldosecologanin (Centauroside)

Catalog No: CFN95079
CAS No: 82474-97-3
Price: $388/5mg
5,6,7,3',4',5'-Hexamethoxyflavanon...

Catalog No: CFN95376
CAS No: 74064-17-8
Price: $318/10mg
Isorhamnetin-3-O-rutinoside-7-O-gl...

Catalog No: CFN95494
CAS No: 55481-91-9
Price: $318/5mg
2'-Rhamnoechinacoside

Catalog No: CFN95035
CAS No: 1422390-59-7
Price: $368/10mg
threo-Guaiacylglycerol-beta-conife...

Catalog No: CFN95417
CAS No: 650600-33-2
Price: $318/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.9131 mL 9.5657 mL 19.1314 mL 38.2629 mL 47.8286 mL
5 mM 0.3826 mL 1.9131 mL 3.8263 mL 7.6526 mL 9.5657 mL
10 mM 0.1913 mL 0.9566 mL 1.9131 mL 3.8263 mL 4.7829 mL
50 mM 0.0383 mL 0.1913 mL 0.3826 mL 0.7653 mL 0.9566 mL
100 mM 0.0191 mL 0.0957 mL 0.1913 mL 0.3826 mL 0.4783 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Peonidin chloride

Catalog No: CFN92034
CAS No: 134-01-0
Price: $380/5mg
Juglone

Catalog No: CFN90497
CAS No: 481-39-0
Price: $40/20mg
Vaccarin

Catalog No: CFN90131
CAS No: 53452-16-7
Price: $30/20mg
Orobol

Catalog No: CFN98737
CAS No: 480-23-9
Price: $ /
Baicalein

Catalog No: CFN98783
CAS No: 491-67-8
Price: $40/20mg
Momordicoside P

Catalog No: CFN92308
CAS No: 1011726-62-7
Price: $ / mg
7-Epitaxol

Catalog No: CFN90371
CAS No: 105454-04-4
Price: $60/20mg
Phloretin

Catalog No: CFN97040
CAS No: 60-82-2
Price: $40/20mg
Cannabidivarin

Catalog No: CFN89253
CAS No: 24274-48-4
Price: $ / mg
Phillygenin

Catalog No: CFN90511
CAS No: 487-39-8
Price: $118/20mg
Tags: buy Sodium tauroursodeoxycholate | Sodium tauroursodeoxycholate supplier | purchase Sodium tauroursodeoxycholate | Sodium tauroursodeoxycholate cost | Sodium tauroursodeoxycholate manufacturer | order Sodium tauroursodeoxycholate | Sodium tauroursodeoxycholate distributor