Science | Nature | Cell | View More
Natural Products
Ruscogenin
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Ruscogenin
Price: $128 / 20mg
CAS No.: 472-11-7
Catalog No.: CFN99530
Molecular Formula: C27H42O4
Molecular Weight: 430.63 g/mol
Purity: >=98%
Type of Compound: Steroids
Physical Desc.: White powder
Source: The roots of Ophiopogon japonicus.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Download: COA    MSDS    SDF    Manual
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $42.3 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Universite Libre de Bruxelles (Belgium)
  • University of Vigo (Spain)
  • Universidade de Franca (Brazil)
  • University of Wuerzburg (Germany)
  • Korea Institute of Oriental Med... (Korea)
  • Kitasato University (Japan)
  • Kazusa DNA Research Institute (Japan)
  • University of Toronto (Canada)
  • Warszawski Uniwersytet Medyczny (Poland)
  • FORTH-IMBB (Greece)
  • Max Rubner-Institut (MRI) (Germany)
  • More...
Package
Featured Products
Seneciphylline

Catalog No: CFN98747
CAS No: 480-81-9
Price: $238/5mg
Nerolidol

Catalog No: CFN98638
CAS No: 7212-44-4
Price: $30/20mg
Alpinumisoflavone

Catalog No: CFN98440
CAS No: 34086-50-5
Price: $ /
Angelicin

Catalog No: CFN98854
CAS No: 523-50-2
Price: $30/20mg
Velutin

Catalog No: CFN98290
CAS No: 25739-41-7
Price: $/mg
Isorhyncophylline

Catalog No: CFN92553
CAS No: 6859-01-4
Price: $158/20mg
Madecassic acid

Catalog No: CFN99914
CAS No: 18449-41-7
Price: $30/20mg
Methyl rosmarinate

Catalog No: CFN97567
CAS No: 99353-00-1
Price: $268/20mg
Physalin A

Catalog No: CFN92940
CAS No: 23027-91-0
Price: $318/5 mg
Rebaudioside B

Catalog No: CFN90470
CAS No: 58543-17-2
Price: $138/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities.Ruscogenin significantly attenuates LPS-induced acute lung injury (ALI )via inhibiting expressions of TF and iNOS and NF-κB p65 activation, it inhibits activation of neutrophil through cPLA 2 , PAK, Akt, MAPKs, cAMP, and PKA signaling pathways.
Targets: PGE | TNF-α | NF-kB | p65 | NO | NOS | COX | ERK | JNK | Akt | p38MAPK | PKA | cAMP | IL Receptor
In vivo:
J Pharmacol Sci. 2008 Oct;108(2):198-205.
Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-kappaB.[Pubmed: 18946195]
Ruscogenin (RUS), first isolated from Ruscus aculeatus, also a major steroidal sapogenin of traditional Chinese herb Radix Ophiopogon japonicus, has been found to exert significant anti-inflammatory and anti-thrombotic activities.
METHODS AND RESULTS:
Our previous studies suggested that Ruscogenin remarkably inhibited adhesion of leukocytes to a human umbilical vein endothelial cell line (ECV304) injured by tumor necrosis factor-alpha (TNF-alpha) in a concentration-dependent manner. Yet the underlying mechanisms remain unclear. In this study, the in vivo effects of Ruscogenin on leukocyte migration and celiac prostaglandin E(2) (PGE(2)) level induced by zymosan A were studied in mice. Furthermore, the effects of Ruscogenin on TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappaB (NF-kappaB) activation were also investigated under consideration of their key roles in leukocyte recruitment. The results showed that Ruscogenin significantly suppressed zymosan A-evoked peritoneal total leukocyte migration in mice in a dose-dependent manner, while it had no obvious effect on PGE(2) content in peritoneal exudant. Ruscogenin also inhibited TNF-alpha-induced over expression of ICAM-1 both at the mRNA and protein levels and suppressed NF-kappaB activation considerably by decreasing NF-kappaB p65 translocation and DNA binding activity.
CONCLUSIONS:
These findings provide some new insights that may explain the possible molecular mechanism of Ruscogenin and Radix Ophiopogon japonicus for the inhibition of endothelial responses to cytokines during inflammatory and vascular disorders.
Biomed Res Int. 2014;2014:652680.
Ruscogenin ameliorates experimental nonalcoholic steatohepatitis via suppressing lipogenesis and inflammatory pathway.[Pubmed: 25136608]
The aim of the study was to investigate the protective effects of Ruscogenin, a major steroid sapogenin in Ophiopogon japonicus, on experimental models of nonalcoholic steatohepatitis.
METHODS AND RESULTS:
HepG2 cells were exposed to 300 μmol/l palmitic acid (PA) for 24 h with the preincubation of Ruscogenin for another 24 h. Ruscogenin (10.0 μmol/l) had inhibitory effects on PA-induced triglyceride accumulation and inflammatory markers in HepG2 cells. Male golden hamsters were randomly divided into five groups fed a normal diet, a high-fat diet (HFD), or a HFD supplemented with Ruscogenin (0.3, 1.0, or 3.0 mg/kg/day) by gavage once daily for 8 weeks. Ruscogenin alleviated dyslipidemia, liver steatosis, and necroinflammation and reversed plasma markers of metabolic syndrome in HFD-fed hamsters. Hepatic mRNA levels involved in fatty acid oxidation were increased in Ruscogenin-treated HFD-fed hamsters. Conversely, Ruscogenin decreased expression of genes involved in hepatic lipogenesis. Gene expression of inflammatory cytokines, chemoattractive mediator, nuclear transcription factor-(NF-) κB, and α-smooth muscle actin were increased in the HFD group, which were attenuated by Ruscogenin.
CONCLUSIONS:
Ruscogenin may attenuate HFD-induced steatohepatitis through downregulation of NF-κB-mediated inflammatory responses, reducing hepatic lipogenic gene expression, and upregulating proteins in β-oxidation pathway.
Int J Mol Sci . 2016 Aug 29;17(9):1418.
Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway[Pubmed: 27589720]
Abstract Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of Ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of Ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, Ruscogenin (0.1-10 μM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, Ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, Ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke. Keywords: MAPK; blood-brain barrier; inflammasome; ischemic stroke; Ruscogenin.
Ruscogenin Description
Source: The roots of Ophiopogon japonicus.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Momordicine V

Catalog No: CFN95164
CAS No: 1012315-36-4
Price: $463/5mg
Octyl 3-(4-hydroxyphenyl)prop-2-en...

Catalog No: CFN95563
CAS No: N/A
Price: $318/5mg
Giganteone A

Catalog No: CFN95481
CAS No: 460337-13-7
Price: $318/5mg
Acacetin 7-[rhamnosyl-(1->2)-galac...

Catalog No: CFN95358
CAS No: 38722-95-1
Price: $318/10mg
5-Demethylsinensetin

Catalog No: CFN95415
CAS No: 21763-80-4
Price: $318/10mg
Quasipanaxatriol

Catalog No: CFN95248
CAS No: 171903-78-9
Price: $413/5mg
5-Hydroxy-1-(4-hydroxyphenyl)-7-ph...

Catalog No: CFN95137
CAS No: 105955-04-2
Price: $268/20mg
Poricoic acid G

Catalog No: CFN95056
CAS No: 415724-84-4
Price: $318/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3222 mL 11.6109 mL 23.2218 mL 46.4436 mL 58.0545 mL
5 mM 0.4644 mL 2.3222 mL 4.6444 mL 9.2887 mL 11.6109 mL
10 mM 0.2322 mL 1.1611 mL 2.3222 mL 4.6444 mL 5.8054 mL
50 mM 0.0464 mL 0.2322 mL 0.4644 mL 0.9289 mL 1.1611 mL
100 mM 0.0232 mL 0.1161 mL 0.2322 mL 0.4644 mL 0.5805 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Kinase Assay:
Eur J Pharmacol. 2013 Aug 15;714(1-3):303-11.
Ruscogenin reduces cerebral ischemic injury via NF-κB-mediated inflammatory pathway in the mouse model of experimental stroke.[Pubmed: 23911884]
Transient cerebral ischemia initiates a complex series of inflammatory events, which has been associated with an increase in behavioral deficits and secondary brain damage. Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that Ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activation in anti-inflammatory pathways.
METHODS AND RESULTS:
We hypothesized that Ruscogenin protects against brain ischemia by inhibiting NF-κB-mediated inflammatory pathway. To test this hypothesis, adult male mice (C57BL/6 strain) were pretreated with Ruscogenin and then subjected to transient middle cerebral artery occlusion (MCAO)/reperfusion. After 1 h MCAO and 24 h reperfusion, neurological deficit, infarct sizes, and brain water content were measured. Ruscogenin markedly decreased the infarct size, improved neurological deficits and reduced brain water content after MCAO. The activation of NF-κB Signaling pathway was observed after 1h of ischemia and 1h of reperfusion, and Ruscogenin significantly inhibited NF-κB p65 expression, phosphorylation and translocation from cytosol to nucleus at this time point in a dose-dependent manner. NF-κB DNA binding activity, and the expression of NF-κB target genes, including ICAM-1, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were also suppressed by Ruscogenin pretreatment after 1 h MCAO and 24 h reperfusion.
CONCLUSIONS:
The results indicated that Ruscogenin protected the brain against ischemic damage caused by MCAO, and this effect may be through downregulation of NF-κB-mediated inflammatory responses.
J. Steroid Biochem., 2015, 154:85-93.
Ruscogenin suppresses mouse neutrophil activation: Involvement of protein kinase A pathway.[Reference: WebLink]
Ruscogenin, a natural steroidal sapogenin, presents in both food and medicinal plants. It has been found to exert significant anti-inflammatory activities.
METHODS AND RESULTS:
Considering that activation of neutrophil is a key feature of inflammatory diseases, this study was performed to investigate the inhibitory effect of Ruscogenin and its underlying mechanisms responsible for neutrophil activation. Moreover, Ruscogenin inhibited phosphorylation of protein kinase B (Akt), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK). In addition, the inhibitory effects of Ruscogenin on superoxide production and the phosphorylation of Akt, p38MAPK, and ERK1/2 were reversed by PKA inhibitor (H89), suggesting a PKA-dependent mechanism.
CONCLUSIONS:
In summary, our data suggest that Ruscogenin inhibits activation of neutrophil through cPLA2, PAK, Akt, MAPKs, cAMP, and PKA signaling pathways. Increased PKA activity is associated with suppression of the phosphorylation of Akt, p38MAPK, and ERK1/2 pathways.
Cell Research:
Int Immunopharmacol. 2012 Jan;12(1):88-93.
Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.[Pubmed: 22079591 ]
Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic.
METHODS AND RESULTS:
Here, we studied the inhibitory effect of Ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of Ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by Ruscogenin. In addition, Ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, Ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice.
CONCLUSIONS:
These findings confirmed that Ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.
Seneciphylline

Catalog No: CFN98747
CAS No: 480-81-9
Price: $238/5mg
Nerolidol

Catalog No: CFN98638
CAS No: 7212-44-4
Price: $30/20mg
Alpinumisoflavone

Catalog No: CFN98440
CAS No: 34086-50-5
Price: $ /
Angelicin

Catalog No: CFN98854
CAS No: 523-50-2
Price: $30/20mg
Velutin

Catalog No: CFN98290
CAS No: 25739-41-7
Price: $/mg
Isorhyncophylline

Catalog No: CFN92553
CAS No: 6859-01-4
Price: $158/20mg
Madecassic acid

Catalog No: CFN99914
CAS No: 18449-41-7
Price: $30/20mg
Methyl rosmarinate

Catalog No: CFN97567
CAS No: 99353-00-1
Price: $268/20mg
Physalin A

Catalog No: CFN92940
CAS No: 23027-91-0
Price: $318/5 mg
Rebaudioside B

Catalog No: CFN90470
CAS No: 58543-17-2
Price: $138/20mg
Tags: buy Ruscogenin | Ruscogenin supplier | purchase Ruscogenin | Ruscogenin cost | Ruscogenin manufacturer | order Ruscogenin | Ruscogenin distributor