Science | Nature | Cell | View More
Natural Products
Vinblastine
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Vinblastine
Price: $100 / 20mg
CAS No.: 865-21-4
Catalog No.: CFN90230
Molecular Formula: C46H58N4O9
Molecular Weight: 810.96 g/mol
Purity: >=98%
Type of Compound: Alkaloids
Physical Desc.: Powder
Source: The herbs of Catharanthus roseus (L.)G. Don
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Download: COA    MSDS    SDF
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / $36.3 / In-stock
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Semmelweis Unicersity (Hungary)
  • Complutense University of Madrid (Spain)
  • University of Stirling (United Kingdom)
  • University of Wollongong (Australia)
  • University of Canterbury (New Zealand)
  • National Cancer Institute (USA)
  • Charles Sturt University (Denmark)
  • University of Liège (Belgium)
  • Johannes Gutenberg University M... (Germany)
  • University of Toronto (Canada)
  • University of Oslo (Norway)
  • More...
Package
Featured Products
Kaempferol 3-gentiobioside

Catalog No: CFN92384
CAS No: 22149-35-5
Price: $80/20mg
Quercetin-3-o-rutinose

Catalog No: CFN92447
CAS No: 949926-49-2
Price: $ / mg
Ginsenoside Rg1

Catalog No: CFN99967
CAS No: 22427-39-0
Price: $40/20mg
6,8-Diprenylgenistein

Catalog No: CFN97935
CAS No: 51225-28-6
Price: $ / mg
Methylophiopogonanone B

Catalog No: CFN98596
CAS No: 74805-91-7
Price: $268/20mg
Oleic acid

Catalog No: CFN94800
CAS No: 112-80-1
Price: $30/20mg
Echinacoside

Catalog No: CFN98105
CAS No: 82854-37-3
Price: $30/20mg
Astragalin

Catalog No: CFN98733
CAS No: 480-10-4
Price: $80/20mg
1,2,3,4,6-O-Pentagalloylglucose

Catalog No: CFN90192
CAS No: 14937-32-7
Price: $80/20mg
Piperlonguminine

Catalog No: CFN91121
CAS No: 5950-12-9
Price: $288/20mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Vinblastine is a cytotoxic alkaloid used against various cancer types. Vinblastine inhibits the formation of microtubule and suppresses nAChR with an IC50 of 8.9 μM.Vinblastine potently induced the proapoptotic protein PMAIP1 (NOXA) in both time- and dose-dependent manner and this was required for the observed apoptosis.The combination of antifungal azoles with Vinblastine can increase the incidence and severity of hyponatremia. Therefore, combined administration of azole antifungals with Vinblastine should be avoided.
Targets: ATPase | PARP | Caspase | P450 (e.g. CYP17) | HSP (e.g. HSP90) | Calcium Channel | NF-kB | IkB | AP-1 | JNK | p38MAPK | IKK
In vitro:
Exp Parasitol. 2014 Nov;146:25-33.
Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa.[Pubmed: 25176449]
Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment.
METHODS AND RESULTS:
Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of Vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of Vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by Vinblastine-resistant L. amazonensis promastigotes.
CONCLUSIONS:
Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.
In vivo:
Int J STD AIDS. 2015 Mar;26(3):206-8.
Autonomic neuropathy resulting in recurrent laryngeal nerve palsy in an HIV patient with Hodgkin lymphoma receiving vinblastine and antiretroviral therapy.[Pubmed: 24828552]
Hoarseness of voice due to vocal cord paresis as a result of recurrent laryngeal nerve palsy has been well recognised. Recurrent laryngeal nerve palsy is commonly caused by compression due to tumour or lymph nodes or by surgical damage. Vinca alkaloids are well known to cause peripheral neuropathy. However, vinca alkaloids causing recurrent laryngeal nerve palsy has been reported rarely in children.
METHODS AND RESULTS:
We report a case of an adult patient with HIV who developed hoarseness of voice due to vocal cord paralysis during Vinblastine treatment for Hodgkin lymphoma. Mediastinal and hilar lymph node enlargement in such patients may distract clinicians from considering alternative causes of recurrent laryngeal nerve palsy, with potential ensuing severe or even life-threatening stridor.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014 Oct;22(5):1386-90.
Antifungal azoles exacerbate vinblastine-related hyponatremia in ALL children[Pubmed: 25338594]
The purpose of this study was to investigate the clinical characteristics and the treatments of patients with Vinblastine-related hyponatremia which was aggravated by azole antifungal agents in children with acute lymphoblastic leukemia(ALL).
METHODS AND RESULTS:
A total of 93 children treated with Vinblastine in our department during April 2013 to March 2014 were enrolled in this study and were divided into 3 groups:VDLD, VDLD with azoles antifungal, VDLD with non azoles antifungal. The incidence and severity of hyponatremia were statistically analysed. The results showed that (1) the incidence of hyponatremia in VDLD group was 93.1%(67/72),100%(13/13) in VDLD with azoles antifungal group, and 75%(6/8) in VDLD with non-azoles antifungal, there was no statistically difference between these three groups. (2) Incidence of moderate to severe hyponatremia (Na<129 mmol/L) in VDLD with azoles antifungal group was(9/13,69.2%),which was significartly higher than those in VDLD group (22/72, 30.6%) and in VDLD with non azoles antifungal group (1/8, 12.5%). However, the difference between VDLD group and VDLD with non azoles antifungal group were not statistical significant. (3) the lowest serum sodium level in VDLD with azoles antifungal group (124.0 ± 8.6 mmol/L) was significantly lower than that in VDLD group (130.8 ± 3.8 mmol/L)and VDLD+non azoles antifungal group(132.9 ± 4.9 mmol/L). Otherwise, the difference was not statistically significant between VDLD group and VDLD with non azoles antifungal group. (4) four children with severe hyponatremia showed convulsions and coma which all belong to VDLD with azoles antifungal group. The children with hyponatremia were restricted intake of fluid, adjusted the liquid tension, supplied hypertonic sodium and given diuretic, the serum sodium value gradually picked up in these children. In 4-11 months' follow-up, no hyponatremia happened again in these children.
CONCLUSIONS:
It is concluded that the incident of hyponatremia in children treated with Vinblastine is high, but most of them seldom showed clinical characteristics. The combination of antifungal azoles with Vinblastine can increase the incidence and severity of hyponatremia. Therefore, combined administration of azole antifungals with Vinblastine should be avoided.
Vinblastine Description
Source: The herbs of Catharanthus roseus (L.)G. Don
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Columbianetin beta-D-glucopyranosi...

Catalog No: CFN95038
CAS No: 55836-35-6
Price: $288/5mg
Naringin 6''-acetate

Catalog No: CFN95418
CAS No: 139934-60-4
Price: $318/5mg
Tortoside B (Manglieside E)

Catalog No: CFN95390
CAS No: 190655-17-5
Price: $413/5mg
Iristectorin A-6''-O-glucoside

Catalog No: CFN95597
CAS No: 86849-71-0
Price: $413/5mg
Selaginellin

Catalog No: CFN95030
CAS No: 941269-84-7
Price: $338/5mg
Nortrachelogenin-8'-O-beta-glucosi...

Catalog No: CFN95234
CAS No: 858127-38-5
Price: $368/10mg
New compound 3

Catalog No: CFN95184
CAS No: N/A
Price: $368/5mg
Barbaloin-related compound A

Catalog No: CFN95453
CAS No: 473225-21-7
Price: $318/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.2331 mL 6.1655 mL 12.3311 mL 24.6621 mL 30.8277 mL
5 mM 0.2466 mL 1.2331 mL 2.4662 mL 4.9324 mL 6.1655 mL
10 mM 0.1233 mL 0.6166 mL 1.2331 mL 2.4662 mL 3.0828 mL
50 mM 0.0247 mL 0.1233 mL 0.2466 mL 0.4932 mL 0.6166 mL
100 mM 0.0123 mL 0.0617 mL 0.1233 mL 0.2466 mL 0.3083 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Kinase Assay:
Apoptosis. 2013 Aug;18(8):980-97.
Vinblastine-induced apoptosis of melanoma cells is mediated by Ras homologous A protein (Rho A) via mitochondrial and non-mitochondrial-dependent mechanisms.[Pubmed: 23564313]
Despite the availability of melanoma treatment at the primary site, the recurrence of local melanoma can metastasize to any distant organ. Currently, the available therapies for the treatment of metastatic melanoma are of limited benefit. Thus, the functional analysis of conventional therapies may help to improve their efficiency in the treatment of metastatic melanoma.
METHODS AND RESULTS:
In the present study, the exposure of melanoma cells to Vinblastine was found to trigger apoptosis as evidenced by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis inducing factor, activation of caspase-9 and 3, and cleavage of Poly (ADP-ribose)-Polymerase. Also, Vinblastine enhances the phosphorylation of Ras homologous protein A, the accumulation of reactive oxygen species, the release of intracellular Ca(2+), as well as the activation of apoptosis signal-regulating kinase 1, c-jun-N-terminal kinase, p38, inhibitor of kappaBα (IκBα) kinase, and inositol requiring enzyme 1α. In addition, Vinblastine induces the DNA-binding activities of the transcription factor NF-κB, HSF1, AP-1, and ATF-2, together with the expression of HSP70 and Bax proteins. Moreover, inhibitory experiments addressed a central role for Rho A in the regulation of Vinblastine-induced apoptosis of melanoma cells via mitochondrial and non-mitochondrial-dependent mechanisms.
CONCLUSIONS:
In conclusion, the present study addresses for the first time a central role for Rho A in the modulation of Vinblastine-induced apoptosis of melanoma cells and thereby provides an insight into the molecular action of Vinblastine in melanoma treatment.
Cell Research:
Mol Cancer Ther. 2013 Aug;12(8):1504-14.
Vinblastine rapidly induces NOXA and acutely sensitizes primary chronic lymphocytic leukemia cells to ABT-737.[Pubmed: 23723123]
Proteins of the BCL2 family provide a survival mechanism in many human malignancies, including chronic lymphocytic leukemia (CLL). The BCL2 inhibitor ABT-263 (navitoclax) is active in clinical trials for lymphoid malignancies, yet resistance is expected on the basis of preclinical models. We recently showed that Vinblastine can dramatically sensitize several leukemia cell lines to ABT-737 (the experimental congener of ABT-263). The goal of these experiments was to determine the impact of Vinblastine on ABT-737 sensitivity in CLL cells isolated from peripheral blood and to define the underlying mechanism.
METHODS AND RESULTS:
Freshly isolated CLL cells from 35 patients, as well as normal lymphocytes and platelets, were incubated with various microtubule-disrupting agents plus ABT-737 to assess sensitivity to the single agents and the combination. ABT-737 and Vinblastine displayed a range of sensitivity as single agents, and Vinblastine markedly sensitized all CLL samples to ABT-737 within six hours. Vinblastine potently induced the proapoptotic protein PMAIP1 (NOXA) in both time- and dose-dependent manner and this was required for the observed apoptosis. Combretastatin A4, which dissociates microtubules by binding to a different site, had the same effect, confirming that interaction of these agents with microtubules is the initial target. Similarly, vincristine and vinorelbine induced NOXA and enhanced CLL sensitivity to ABT-737. Furthermore, Vinblastine plus ABT-737 overcame stroma-mediated resistance to ABT-737 alone. Apoptosis was induced with clinically achievable concentrations with no additional toxicity to normal lymphocytes or platelets.
CONCLUSIONS:
These results suggest that vinca alkaloids may improve the clinical efficacy of ABT-263 in patients with CLL.
Kaempferol 3-gentiobioside

Catalog No: CFN92384
CAS No: 22149-35-5
Price: $80/20mg
Quercetin-3-o-rutinose

Catalog No: CFN92447
CAS No: 949926-49-2
Price: $ / mg
Ginsenoside Rg1

Catalog No: CFN99967
CAS No: 22427-39-0
Price: $40/20mg
6,8-Diprenylgenistein

Catalog No: CFN97935
CAS No: 51225-28-6
Price: $ / mg
Methylophiopogonanone B

Catalog No: CFN98596
CAS No: 74805-91-7
Price: $268/20mg
Oleic acid

Catalog No: CFN94800
CAS No: 112-80-1
Price: $30/20mg
Echinacoside

Catalog No: CFN98105
CAS No: 82854-37-3
Price: $30/20mg
Astragalin

Catalog No: CFN98733
CAS No: 480-10-4
Price: $80/20mg
1,2,3,4,6-O-Pentagalloylglucose

Catalog No: CFN90192
CAS No: 14937-32-7
Price: $80/20mg
Piperlonguminine

Catalog No: CFN91121
CAS No: 5950-12-9
Price: $288/20mg
Tags: buy Vinblastine | Vinblastine supplier | purchase Vinblastine | Vinblastine cost | Vinblastine manufacturer | order Vinblastine | Vinblastine distributor