Description: |
Butein is a chelator of ferrous and copper ions, is able to inhibit the activation of protein tyrosine kinase, NF-κB and STAT3, also inhibits EGFR. Butein can inactivate PMA-activated AP-1, due to the blocking of JNK-mediated c-Jun phosphorylation through the inhibition of ATP binding. Butein has potent anticancer, anti-inflammatory, antioxidant activities, it also has a hypotensive effect, at least in part, via the inhibition of angiotensin converting enzyme. |
In vitro: |
Am J Chin Med. 2015 Jun 28:1-14. | Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells.[Pubmed: 26119952] | Butein is a polyphenol, one of the compounds of chalcones, which are flavonoids that are widely biosynthesized in plants, and exhibits different pharmacological activities. Plants containing Butein have been used in Chinese traditional medicine.
Recently, it has been reported that Butein suppresses proliferation and triggers apoptosis in various human cancer cells in vitro and in vivo. The aim of this study was to investigate its pro-apoptotic effect and mechanisms in two cultured human ovarian cancer cells (ES-2 and TOV-21G).
METHODS AND RESULTS:
The effects of Butein on cell viability were assessed by a MTT assay at 3, 10, 30, and 100 μ/M. The apoptotic pathway related factors, including the mitochondrial transmembrane potential (MTP), cytochrome c, caspase cascade, and Bcl-2 family proteins, were examined. MTT assay revealed that Butein was cytotoxic to both ovarian cancer cells in a dose- and time-dependent manner. JC-1 flow cytometry, cytochrome c, and caspase activity assays revealed that Butein damaged the MTP, increased the level of cytosol cytochrome c and the activities of caspase-3, -8, and -9 in the two ovarian cancer cells. Western blot analysis revealed that Butein down-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and increased the pro-apoptotic proteins Bax and Bad. These findings suggest that Butein-induced apoptosis in ovarian cancer cells via the activation of both extrinsic and intrinsic pathways. In addition, Butein also down-regulated the expressions of the inhibitor of apoptosis (IAP) proteins, XIAP, survivin, CIAP-1, and CIAP-2. This indicates that the inhibition of IAP proteins was also involved in Butein-induced apoptosis.
CONCLUSIONS:
The results of our study suggest that Butein may be a promising anticancer agent in treating ovarian cancer. | Biochim Biophys Acta. 1998 Jun 15;1392(2-3):291-9. | Antioxidant properties of butein isolated from Dalbergia odorifera.[Pubmed: 9630680] | The antioxidant properties of Butein, isolated from Dalbergia odorifera T. Chen, were investigated in this study.
METHODS AND RESULTS:
Butein inhibited iron-induced lipid peroxidation in rat brain homogenate in a concentration-dependent manner with an IC50, 3.3+/-0.4 microM. It was as potent as alpha-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with an IC0.200, 9.2+/-1.8 microM. It also inhibited the activity of xanthine oxidase with an IC50, 5.9+/-0.3 microM. Besides, Butein scavenged the peroxyl radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) in aqueous phase, but not that from 2,2-azobis(2, 4-dimethylvaleronitrile) (AMVN) in hexane. Furthermore, Butein inhibited copper-catalyzed oxidation of human low-density lipoprotein (LDL), as measured by conjugated dienes and thiobarbituric acid-reactive substance (TBARS) formations, and electrophoretic mobility in a concentration-dependent manner. Spectral analysis revealed that Butein was a chelator of ferrous and copper ions.
CONCLUSIONS:
It is proposed that Butein serves as a powerful antioxidant against lipid and LDL peroxidation by its versatile free radical scavenging actions and metal ion chelation. |
|
In vivo: |
Biol Pharm Bull. 2003 Sep;26(9):1345-7. | Hypotensive effect of butein via the inhibition of angiotensin converting enzyme.[Pubmed: 12951484] | Butein (3,4,2',4'-tetrahydroxychalcone), a plant polyphenol, has been known to elucidate endothelium-dependent vasodilation.
METHODS AND RESULTS:
In the present study, the hypotensive effect of Butein and its possible mechanism, especially an angiotensin converting enzyme (ACE) inhibitory effect, were investigated. Intravenous injection of Butein lowered the arterial blood pressure of anesthetized rats in a dose-dependent manner. The plasma ACE activities were significantly inhibited by the addition of Butein in a dose-dependent manner, the IC(50) value of which was 198 microg/ml (730 microM). Moreover, angiotensin I-induced contraction was markedly attenuated by prior exposure of endothelium-intact aortic rings to Butein, but angiotensin II-induced contraction was not altered.
CONCLUSIONS:
These results suggest that Butein has a hypotensive effect, at least in part, via the inhibition of angiotensin converting enzyme. |
|