Description: |
Echinacoside is a natural polyphenolic compound, has various kinds of pharmacological activities, such as anti-senescence, anti-hypoxia, anti-cancer, anti-osteoporosis, antioxidative, anti-inflammatory, neuroprotective, hepatoprotective, nitric oxide radical-scavenging and vasodilative ones. Echinacoside can improve the hematopoietic function of bone marrow in 5-FU-induced myelosuppression mice, it induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Echinacoside inhibits cytochrome c release and caspase-3 activation caused by ensuing rotenone exposure via activating Trk-extracellular signal-regulated kinase (ERK) pathway in neuronal cells. |
In vitro: |
Int J Biol Macromol. 2015 Jan;72:243-53. | Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity.[Pubmed: 25193102] | We investigated the protection provided by Echinacoside against neurotoxicity induced by β-amyloid protein (Aβ). Through spectroscopic analyses, electron microscopy, cell viability assay, and hemolysis assay, we found that Echinacoside dose dependently inhibited HEWL aggregation, and this inhibition occurred in different fiber-forming stages. Echinacoside could also scavenge the DPPH and OH free radicals in a concentration-dependent manner. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2',7'-dichlorodihydrofluoresceindiacetate (DCFH-DA) fluorescent measurement results indicated that Echinacoside could increase viability of rat pheochromocytoma PC12 cells injured by Aβ and suppress the increase in intracellular reactive oxygen species (ROS) triggered by Aβ. The present study findings facilitate a better understanding of the interaction between Echinacoside and amyloid-forming proteins and also shed light on the protection of Echinacoside against amyloid fibril-induced neuronal cell death. | J Pharmacol Sci. 2014;126(2):155-63. | Antiproliferative effect of echinacoside on rat pulmonary artery smooth muscle cells under hypoxia.[Pubmed: 25341567] | The main purpose of this study is to evaluate the effect of Echinacoside (ECH) on hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism.
METHODS AND RESULTS:
PASMCs were incubated under normoxia (nor), hypoxia (hyp), hypoxia + 0.35 mM ECH (hyp + ECH0.35), or hypoxia + 0.4 mM ECH (hyp + ECH0.4) for 24 h. Cell viability was assessed by MTS assays. The morphology of apoptosis was observed by DAPI staining, and apoptosis was quantified by flow cytometric analysis. Caspase-3 activity was determined by immunohistochemistry and real-time PCR, and the expressions of HIF-1α, Bax, Bcl-2, and Fas were determined by real-time PCR. Hypoxia induced significant proliferation of PASMCs, which could be inhibited by ECH in a concentration-dependent manner. This was associated with apoptosis of PASMCs. Z-DEVD-FMK could partly reduce the suppression effect of ECH; protein and gene expression of caspase-3 were significantly higher in the hyp + ECH0.4 and hyp + ECH0.35 groups. ECH significantly increased the expressions of Bax and Fas, but decreased the expressions of Bcl-2 and HIF-1α.
CONCLUSIONS:
ECH could inhibit hypoxia-induced proliferation of rat PASMCs, which is associated with apoptosis of PASMCs and improvement of hypoxia. ECH might be a potential agent for prevention and treatment of hypoxia-induced PAH. | Onco Targets Ther. 2015 Dec 8;8:3649-64. | Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1.[Pubmed: 26677335 ] | Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1.
METHODS AND RESULTS:
Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine), while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells.
CONCLUSIONS:
Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. | Biochem Biophys Res Commun . 2020 May 21;526(1):170-175. | Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway[Pubmed: 32201078] | Abstract
Echinacoside, a small molecule derived from the natural herbs Cistanche and Echinacea, shows effective anticancer abilities, but the mechanism remains unclear. By using colony formation, scratch, and transwell assays in MDA-MB-231 breast cancer cells, we confirmed the anti-breast cancer ability of Echinacoside in vitro. In addition, we found that Echinacoside can dose-dependently reduce phosho-LRP6, total LRP6, phosho-Dvl2, active β-catenin, and total β-catenin protein expression level in MDA-MB-231 and MDA-MB-468 cells by western blot. We also detected well-known Wnt targets genes, including LEF1, CD44, and cyclin D1 by real-time PCR and western blot, and Echinacoside significantly shows inhibition effect in these two breast cancer cell lines. Furthermore, we investigated its anti-breast cancer ability in an MDA-MB-231 xenograft model in vivo. Echinacoside treatment significantly reduced tumor growth, which was accompanied by a reduction in Wnt/β-catenin signaling. In summary, our results demonstrate that Echinacoside can effectively inhibit Wnt/β-catenin signaling, and therefore, it may be a promising therapeutic target to treat breast cancer.
Keywords: Anti-Breast cancer; Echinacoside; Wnt/β-catenin signaling. |
|
In vivo: |
Scand J Gastroenterol. 2014 Aug;49(8):993-1000. | Echinacoside ameliorates D-galactosamine plus lipopolysaccharide-induced acute liver injury in mice via inhibition of apoptosis and inflammation.[Pubmed: 24797709] | This study aimed to investigate the protective effects of Echinacoside, one of the phenylethanoids isolated from the stems of Cistanche salsa, a Chinese herbal medicine, on D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced acute liver injury in mice. METHODS AND RESULTS: Pretreatment with Echinacoside remarkably improved the survival rate of GalN/LPS-treated mice and attenuated acute hepatotoxicity, as demonstrated by decreased ALT levels and improved histological signs. Echinacoside shows both anti-apoptotic and anti-inflammatory properties, characterized by a substantial inhibition of hepatocyte apoptosis and a significant reduction in the inflammatory markers, including myeloperoxidase, extracellular nucleosomes, high-mobility group box 1, and inflammatory cytokines in the plasma of mice, which may be important mechanisms related to its protective effect. CONCLUSIONS: Our results suggest that Echinacoside can provide a pronounced protection against GalN/LPS-induced acute liver injury in mice, which may complement the available strategies for management of acute liver damage in clinical settings. | Life Sci. 2015 Feb 15;123:86-92. | Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice.[Pubmed: 25623854] | We aimed to investigate the effects of Echinacoside (ECH) on hematopoietic function in 5-FU-induced bone marrow depression mice.
METHODS AND RESULTS:
In vitro, after stimulation with ECH, the proliferation ability of bone marrow (BM) cells and bone marrow stromal cells (BMSCs) derived from myelosuppression mice were assessed by CCK8 assay and morphology, respectively. In vivo, 5-FU-induced myelosuppression or control mice were intragastrically administrated with either ECH at 15 mg/kg or the equal volume of normal saline daily for 12 days before BM cells were isolated for colony-forming cell assay. Meanwhile, BMSCs were cultured for 4 weeks before cells were observed for growth pattern, cell culture supernatants were collected for GM-CSF secretion by ELISA, and RNA of the cells were extracted for EPO and GM-CSF RT-PCR. BM cells or BMSCs stimulated with ECH for 24 h or 48 h were collected for protein extraction and Western blotting.
ECH stimulated the growth of BM cells but not BMSCs derived from 5-FU treated mice. The intragastric administration of ECH in 5-FU treated mice could increase the number of total hematopoietic progenitor cells and GM progenitor cells to healthy control mice level, but not BFU progenitor cells. BMSCs from ECH treated myelosuppression mice grew more vigorously and expressed more GM-CSF, but not EPO. ECH activated the PI3K signaling pathway in 5-FU suppressed BM cells.
CONCLUSIONS:
ECH could improve the hematopoietic function of bone marrow in 5-FU-induced myelosuppression mice. ECH can be considered as an alternative effective therapy for patients during chemotherapy or HSC transplantation. |
|