In vitro: |
Steroids. 2016 Jan;105:42-9. | Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.[Pubmed: 26631549 ] | Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. METHODS AND RESULTS: We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. CONCLUSIONS: Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs. | Molecules. 2014 Aug 25;19(9):13027-41. | Structures of new phenolics isolated from licorice, and the effectiveness of licorice phenolics on vancomycin-resistant Enterococci.[Pubmed: 25157467] | Licorice, which is the underground part of Glycyrrhiza species, has been used widely in Asian and Western countries as a traditional medicine and as a food additive. METHODS AND RESULTS: Our continuous investigation on the constituents of roots and stolons of Glycyrrhiza uralensis led to the isolation of two new phenolics, in addition to 14 known compounds. Structural studies including spectroscopic and simple chemical derivatizations revealed that both of the new compounds had 2-aryl-3-methylbenzofuran structures. An examination of the effectiveness of licorice phenolics obtained in this study on vancomycin-resistant strains Enterococcus faecium FN-1 and Enterococcus faecalis NCTC12201 revealed that licoricidin showed the most potent antibacterial effects against both of E. faecalis and E. faecium with a minimum inhibitory concentration (MIC) of 1.9 × 10-5 M. 8-(γ,γ-Dimethylallyl)-wighteone, isoangustone A, 3'-(γ,γ-dimethylallyl)-kievitone, Glyasperin C, and one of the new 3-methyl-2-phenylbenzofuran named neoglycybenzofuran also showed potent anti-vancomycin-resistant Enterococci effects (MIC 1.9 × 10-5-4.5 × 10-5 M for E. faecium and E. faecalis).
CONCLUSIONS:
The HPLC condition for simultaneous detection of the phenolics in the extract was investigated to assess the quality control of the natural antibacterial resource, and quantitative estimation of several major phenolics in the extract with the established HPLC condition was also performed. The results showed individual contents of 0.08%-0.57% w/w of EtOAc extract for the major phenolics in the materials examined. |
|