In vitro: |
Cytotechnology,2010 Oct;62(5):449-60. | Perifosine induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cell lines by blockade of Akt phosphorylation.[Pubmed: 20842425] | Hepatocellular carcinoma (HCC) is one of the most common solid cancers, representing the third cause of cancer-related death among cirrhotic patients. Treatment of advanced HCC has become a very active area of research. Perifosine, a new synthetic alkylphospholipid Akt inhibitor, has shown anti-tumor activity by inhibition of Akt phosphorylation.
METHODS AND RESULTS:
In this study, the effect of perifosine on the cell proliferation and apoptosis in hepatoma cells has been investigated. Cell growth inhibition was detected by MTT assay, cell cycle was analyzed by flow cytometry, AnnexinV-FITC apoptosis detection kit was used to detect cell apoptosis, and protein expression was examined by Western blotting analysis. Our present studies showed that Akt phosphorylation was inhibited by perifosine in HepG2 and Bel-7402 human hepatocellular carcinoma cells. Perifosine inhibited the growth of HepG2 cells and Bel-7402 cells in a dose-dependent manner, and arrested cell cycle progression at the G(2) phase. Apoptosis induction became more effective with increasing perifosine concentration. The caspase cascade and its downstream effectors, Poly (ADP-ribose) polymerase (PARP), were also activated simultaneously upon perifosine treatment. The proapoptotic effect of perifosine was in part depending on regulation of the phosphorylation level of ERK and JNK. Perifosine cotreatment substantially increased cytotoxic effects of cisplatin in HepG2 cells. Down-regulating the expression of Bcl-2 and up-regulating the level of Bax may be the potential mechanism for this synergistic effect.
CONCLUSIONS:
Our findings suggest that the small molecule Akt inhibitor perifosine shows substantial anti-tumor activity in human hepatoma cancer cell lines, and is a good candidate for treatment combinations with classical cytostatic compounds in hepatocellular carcinoma. |
|
In vivo: |
Exp Hematol,2007 Jul;35(7):1038-46. | Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model.[Pubmed: 17588472] | Alkyl-lysophospholipids are a novel class of antitumor agents. Perifosine is a novel alkyl-lysophospholipid that can induce apoptosis in multiple myeloma (MM) tumor cells, both in vitro and in vivo. We investigated the effects of perifosine on the peripheral blood, bone marrow, and spleen of mice inoculated with subcutaneous plasmacytomas.
METHODS AND RESULTS: Immunocompromised mice were inoculated with myeloma cell lines and treated with oral perifosine in either a daily or weekly schedule, or with vehicle only. When plasmacytomas reached 2 cm, mice were sacrificed. Terminal blood was analyzed with a Coulter counter, and counts were confirmed by light microscopy. Marrow and spleen were also analyzed by light microscopy. In control mice, mean hemoglobin was 12 g/dL, white blood cell (WBC) count 7 x 10(9)/L, and mean platelet count was 292 x 10(9)/L. In contrast, the respective values for mice treated with perifosine weekly were 11 g/dL, 9 x 10(9)/L, and 944 x 10(9)/L; and for mice treated with perifosine daily were 10 g/dL, 11 x 10(9)/L, and 752 x 10(9)/L. The increase in WBCs was due, predominantly, to a neutrophilia. Compared to control mice, perifosine treatment induced marrow hypercellularity and splenic white pulp expansion.
CONCLUSIONS: These findings have clinical relevance because myeloid suppression is a dose-limiting toxicity of many cytotoxic agents, and myeloid hyperplasia is usually only observed in the setting of growth factor stimulation. Coupled with its remarkable in vitro MM cytotoxicity, these results strongly support the use of perifosine in clinical trials for patients with MM. |
|