Kinase Assay: |
J Neurochem. 2014 Dec;131(6):731-42. | MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis.[Pubmed: 25040912] | All-trans Retinoic acid (ATRA), a derivative of retinoid, is involved in the onset of differentiation and apoptosis in a wide variety of normal and cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression. Several miRNAs were identified to participate in ATRA-mediated cell differentiation. However, no studies have demonstrated whether miRNA can enhance ATRA cytotoxicity, thereby resulting in cell apoptosis. This study investigated the effects of ATRA-mediated miRNA expression in activating apoptotic pathways in glioblastoma. METHODS AND RESULTS: First, we found that high-dose ATRA treatment significantly reduced cell viability, caspase-dependent apoptosis, endoplasmic reticular (ER) stress activation, and intracellular reactive oxygen species accumulation. From microarray data, miR-302b was analyzed as a putative downstream regulator upon ATRA treatment. Furthermore, we found that ATRA up-regulated miR-302b expression in a dose- and time-dependent manner through Retinoic acid receptor α-mediated pathway. Overexpression and knockdown of miR-302b significantly influenced ATRA-mediated cytotoxicity. E2F3, an important transcriptional regulator of glioma proliferation, was validated to be a direct target gene of miR-302b. The miR-302b-reduced E2F3 levels were also identified to be associated with ATRA-mediated glioma cell death. CONCLUSIONS: These results emphasize that an ATRA-mediated miR-302b network may provide novel therapeutic strategies for glioblastoma therapy. We propose that high-dose all-trans Retinoic acid (ATRA) treatment, a derivative of retinoid, significantly induces glioblastoma cell apoptosis via caspase-dependent apoptosis, endoplasmic reticular (ER) stress, and intracellular reactive oxygen species (ROS) accumulation. The miR-302b overexpression enhanced by ATRA-mediated Retinoic acid receptor (RAR)α pathway was also identified. The E2F3 repression, a novel target gene of miR-302b, was involved in ATRA-induced glioblastoma cell cytotoxicity. | Hum Immunol. 2014 Aug;75(8):923-9. | Retinoic acid acts as a selective human IgA switch factor.[Pubmed: 24994461] | Retinoic acid (RA) is known to have several functions that lead to a potent mucosal IgA response. Nevertheless, its exact role in human IgA synthesis has yet to be elucidated. Thus, we investigated the role of RA in promoting IgA isotype switching in human B cells. METHODS AND RESULTS: We found that RA increased IgA production and the expression of germ-line IgA1 and IgA2 transcripts (GLTα1 and GLTα2). This induction occurred alongside an increase in the frequency of IgA1-secreting B cell clones, as assessed by limiting dilution analysis. Under the same conditions, RA did not increase IgM and IgG production. Am80, an agonist of RA receptor α (RARα), increased IgA production. In addition, RA activity was abrogated by LE540, an antagonist of RAR, suggesting that the RAR pathway is involved in RA-induced IgA production. CONCLUSIONS: Taken together, these results indicate that RA induces IgA isotype switching mainly through RARα in human B cells. |
|