Kinase Assay: |
Int J Mol Sci. 2013 Nov 28;14(12):23420-40. | Tyrosol and its analogues inhibit alpha-melanocyte-stimulating hormone induced melanogenesis.[Pubmed: 24287915] | Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of Tyrosol and its analogues on melanin synthesis. METHODS AND RESULTS: We found that treatment of B16F0 cells to Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), 2-hydroxyphenylacetic acid (7), or salidroside (11) resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5) and 2-hydroxyphenylacetic acid (7) suppressed MC1R expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) inhibited α-MSH induced TRP-1 expression, but salidroside (11) did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) at concentrations below 4 mM and salidroside (11) at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. CONCLUSIONS: Our results suggest that Tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents. | Food Chem. 2013 Nov 15;141(2):1147-57. | Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease.[Pubmed: 23790897] | Experimental evidence suggests that tyrosol [2-(4-hydroxyphenyl)ethanol] exhibits potent protective activities against several pathogeneses. METHODS AND RESULTS: In this study, we evaluated the protective effect of tyrosol against 1-methyl-4-phenylpyridinium (MPP(+))-induced CATH.a neuron cell death. Tyrosol dose-dependently protected CATH.a cells from MPP(+)-induced cell death and the protection was more apparent after prolong incubation (48h). The data showed that tyrosol treatment suppressed the reduction of phospho-tyrosine hydroxylase level in CATH.a cells. Further, the compound repressed MPP(+)-induced depletion of mitochondrial membrane potential (Δψm) and thereby maintained intracellular ATP production in the cell. The cellular signalling pathway studies revealed that tyrosol protected CATH.a cells from MPP(+)-induced apoptotic signalling, most likely via activation of PI3K/Akt signalling pathway along with up-regulation of anti-oxidative enzymes (SOD-1 and SOD-2) and DJ-1 protein in the cell. CONCLUSIONS: Collectively, present study demonstrates that tyrosol significantly protects dopaminergic neurons from MPP(+)-induced degradation, and reveals potential neuroprotective mechanism of tyrosol. |
|
Cell Research: |
Curr Alzheimer Res. 2011 Aug;8(5):543-51. | Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-β-induced toxicity. Involvement of the NF-κB signaling.[Pubmed: 21605049] | Alzheimer's disease (AD) is the most common form of dementia. Recently, a number of epidemiological studies have evidence that some dietary factors such as low antioxidants and vitamins intake could increase the risk of AD. In the opposite, diets rich in unsaturated fatty acids, in polyphenols, vitamins and antioxidants were identified as preventive factors. Several studies have reported that adherence to the Mediterranean diet (MeDi) was associated with a reduction in incident of dementia. The beneficial effect of MeDi may be the result of the association of some individual and non-identified food components and high consumption of olive oil. METHODS AND RESULTS: In this study we have investigated the protective effects of two components of olive oil, tyrosol (Tyr) and hydroxytyrosol (OH-Tyr), against Aβ-induced toxicity. In cultured neuroblastoma N2a cells, we found that Aβ(25-35) (100 µg/ml) treatment induced a decrease of glutathione (GSH) and the activation of the transcription factor NF-κB and cell death. Our results demonstrated that the number of cell death decreased when cells were co-treated with Aβ and Tyr or OH-Tyr. However, neither of these phenolic compounds was able to prevent the decrease of GSH induced by H(2)O(2) or Aβ. We found that the increase in the nuclear translocation of the NF-κB subunits after Aβ exposure was attenuated in the presence of Tyr or OH-Tyr. CONCLUSIONS: These results identified two individual food components of the MeDi as neuroprotective agent against Aβ and their potential involvement in the beneficial effect of the MeDi for the prevention of AD. |
|
Animal Research: |
Chem Biol Interact. 2015 Mar 5;229:44-54. | Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats.[Pubmed: 25641191] | The present study was designed to evaluate the effects of tyrosol, a phenolic compound, on the activities of key enzymes of carbohydrate metabolism in the control and streptozotocin-induced diabetic rats. METHODS AND RESULTS: Diabetes mellitus was induced in rats by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight). Experimental rats were administered tyrosol 1 ml intra gastrically at the doses of 5, 10 and 20mg/kg body weight and glibenclamide 1 ml at a dose of 600 μg/kg body weight once a day for 45 days. At the end of the experimental period, diabetic control rats exhibited significant (p<0.05) increase in plasma glucose, glycosylated hemoglobin with significant (p<0.05) decrease in plasma insulin, total hemoglobin and body weight. The activities of key enzymes of carbohydrate metabolism such as phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase were significantly (p<0.05) increased and the activities of hexokinase and glucose-6-phosphate dehydrogenase were significantly (p<0.05) decreased in the liver and kidney of diabetic control rats. Further, antioxidants were lowered in diabetic control rats. A significant (p<0.05) decline in glycogen level in the liver and muscle and glycogen synthase activity in the liver and a significant (p<0.05) increase in the activity of liver glycogen phosphorylase were observed in diabetic control rats compared to normal control rats. Oral administration of tyrosol to diabetic rats reversed all the above mentioned biochemical parameters to near normal in a dose dependent manner. Tyrosol at a dose of 20mg/kg body weight showed the highest significant effect than the other two doses. Immunohistochemical staining of pancreas revealed that tyrosol treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. The observed results were compared with glibenclamide, a standard oral hypoglycemic drug. CONCLUSIONS: The results of the present study suggest that tyrosol decreases hyperglycemia, by its antioxidant effect. |
|