In vitro: |
Toxicol Appl Pharmacol. 2013 Feb 15;267(1):95-103. | Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1-AKT interaction.[Pubmed: 23274515] | In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. METHODS AND RESULTS: RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells.
CONCLUSIONS:
Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. | Br J Pharmacol. 2011 Dec;164(7):1883-98. | Cyclopeptide RA-V inhibits angiogenesis by down-regulating ERK1/2 phosphorylation in HUVEC and HMEC-1 endothelial cells.[Pubmed: 21518338] | A cyclopeptide, RA-V, has been shown to have anti-tumour activities. Its in vitro anti-angiogenic activities were evaluated in the present study, and the underlying mechanisms were also assessed. METHODS AND RESULTS: Two endothelial cell lines, human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1), were used. The effects of RA-V on the proliferation, cell cycle phase distribution, migration, tube formation and adhesion were assessed. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant molecules. RA-V inhibited HUVEC and HMEC-1 proliferation dose-dependently with IC(50) values of 1.42 and 4.0 nM respectively. RA-V inhibited migration and tube formation of endothelial cells as well as adhesion to extracellular matrix proteins. RA-V treatment down-regulated the protein and mRNA expression of matrix metalloproteinase-2. Regarding intracellular signal transduction, RA-V interfered with the activation of ERK1/2 in both cell lines. Furthermore, RA-V significantly decreased the phosphorylation of JNK in HUVEC whereas, in HMEC-1, p38 MAPK was decreased. CONCLUSIONS: RA-V exhibited anti-angiogenic activities in HUVEC and HMEC-1 cell lines with changes in function of these endothelial cells. The underlying mechanisms of action involved the ERK1/2 signalling pathway. However, RA-V may regulate different signalling pathways in different endothelial cells. These findings suggest that RA-V has the potential to be further developed as an anti-angiogenic agent. |
|