In vitro: |
Nutrients . 2018 Nov 16;10(11):1781. | Regulation of Adipogenesis and Thermogenesis through Mouse Olfactory Receptor 23 Stimulated by α-Cedrene in 3T3-L1 Cells[Pubmed: 30453511] | Olfactory receptors (ORs) are G protein-coupled receptors that perform important physiological functions beyond their role as odorant detectors in the olfactory sensory neurons. In the present study, we describe a novel role for one of these ORs, mouse olfactory receptor 23 (MOR23), as a regulator of adipogenesis and thermogenesis in 3T3-L1 cells. Downregulation of MOR23 by small interfering RNA in 3T3-L1 cells enhanced intracellular lipid accumulation and reduced the oxygen consumption rate. In agreement with this phenotype, MOR23 deletion significantly decreased intracellular cyclic adenosine monophosphate (cAMP) levels and protein amounts of adenylyl cyclase 3 (ADCY3), protein kinase A catalytic subunit (PKA Cα), phospho-5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), and phospho-cAMP-responsive element-binding protein (CREB), along with upregulation of adipogenic genes and downregulation of genes involved in thermogenesis. Activation of MOR23 by α-cedrene, a novel natural ligand of MOR23, significantly reduced lipid content, increased the oxygen consumption rate, and stimulated reprogramming of the metabolic signature of 3T3-L1 cells, and these changes elicited by α-cedrene were absent in MOR23-deficient cells. These findings point to the role of MOR23 as a regulator of adipogenesis and thermogenesis in adipocytes. |
|
In vivo: |
Drug Metab Pharmacokinet . 2015 Apr;30(2):168-173. | In vivo absorption and disposition of α-cedrene, a sesquiterpene constituent of cedarwood oil, in female and male rats[Pubmed: 25857232] | This study aimed to evaluate the potential of α-cedrene as a new anti-obesity drug by characterizing absorption, metabolism and pharmacokinetics in rats. α-Cedrene was administered intravenously (10 and 20 mg/kg) and orally (50 and 100 mg/kg) to female and male Sprague-Dawley rats. Blood, tissues, urine, and feces were collected at predetermined times. α-Cedrene concentrations were determined by a validated gas chromatography-tandem mass spectrometry (GC-MS/MS). A gas chromatography-mass selective detection (GC-MSD) method was used to identify the major metabolite. After i.v. injection, α-cedrene exhibited a rapid clearance (98.4-120.3 ml/min/kg), a large distribution volume (35.9-56.5 l/kg), and a relatively long half-life (4.0-6.4 h). Upon oral administration, it was slowly absorbed (Tmax = 4.4 h) with bioavailability of 48.7-84.8%. No gender differences were found in its pharmacokinetics. Upon oral administration, α-cedrene was highly distributed to tissues, with the tissue-to-plasma partition coefficients (Kp) far greater than unity for all tissues. In particular, its distribution to lipid was notably high (Kp = 132.0) compared to other tissues. A mono-hydroxylated metabolite was identified as a preliminary metabolite in rat plasma. These results suggest that α-cedrene has the favorable pharmacokinetic characteristics to be further tested as an anti-obesity drug in clinical studies. | Int J Obes (Lond) . 2019 Jan;43(1):202-216. | α-Cedrene protects rodents from high-fat diet-induced adiposity via adenylyl cyclase 3[Pubmed: 30568259] | Objective: The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective strategies for the prevention of weight gain. Here, we investigated the potential of α-cedrene, a volatile sesquiterpene compound derived from cedarwood oil, in regulation of obesity and delineated the mechanisms involved.
Methods: For the prevention of obesity, C57BL/6 N mice were fed a high-fat diet (HFD) and were orally administered either with vehicle or α-cedrene for 8 weeks. For the therapy of obesity, obese Sprague Dawley rats, induced by a HFD for 8 weeks, were orally treated either with vehicle or α-cedrene for 12 weeks. To determine whether the action of α-cedrene was Adcy3 dependent, Adcy3 heterozygous null mice (Adcy3) and wild-type controls were fed either HFD or α-cedrene supplemented HFD for 17 weeks. +/-
Results: Oral α-cedrene administration prevented or reversed HFD-induced obesity and abnormal metabolic aberrations in rodents, without affecting their food intake. Downregulation of Adcy3 expression by small interfering RNA abrogated the beneficial effects of α-cedrene on the oxygen consumption rate and intracellular lipid accumulation in 3T3-L1 adipocytes. Similarly, in Adcy3 mice, the α-cedrene-driven suppression of body weight gain observed in wild-type mice was substantially (~50%) attenuated. Expression of thermogenic and lipid oxidation genes was increased in adipose tissues of α-cedrene-treated mice, with concomitant downregulation of adipogenic gene expression. These beneficial molecular changes elicited by α-cedrene were blunted in adipose tissues of Adcy3 mice. +/-+/-
Conclusions: Our results highlight the potential of α-cedrene for antiobesity interventions and suggest that the antiobesity effect of α-cedrene is mediated by Adcy3 in adipose tissues. | J Sep Sci . 2013 Nov;36(21-22):3558-3562. | GC-MS/MS method for the quantification of α-cedrene in rat plasma and its pharmacokinetic application[Pubmed: 23996797] | α-Cedrene is a pharmacologically active ingredient isolated from the essential oil of cedar. A selective and sensitive GC-MS/MS method was developed for the quantification of α-cedrene in rat plasma for the first time. α-Cedrene was extracted from rat plasma using ethyl acetate at neutral pH. The analytes were determined in selective reaction monitoring mode using MS/MS: m/z 204.3→119.0 for α-cedrene and m/z 146.0→111.0 for 1,4-dichlorobenzene (internal standard). The standard curve was linear (r(2) ≥ 0.995) over the concentration ranges of 5-800 ng/mL. The lower limit of quantification was 5 ng/mL using 50 μL of rat plasma. The coefficient of variation and relative error for intra- and interassays at four quality control levels were 3.1-13.9% and -4.0-2.6%, respectively. The stability of processing (freeze-thaw, long-term storage at -80°C, and short-term storage at room temperature) and chromatography (reinjection) was shown to be of insignificant effect. The present method was applied successfully to the pharmacokinetic study of α-cedrene after its intravenous (10 mg/kg) and oral (25 mg/kg) administration in male Sprague-Dawley rats. |
|